Supplementary Table 1: List of mutations identified exclusively in the postrelapse sample, but not the pre-treatment sample, from a melanoma patient who was treated with vemurafinib and relapsed with a time to disease progression of 5 months.

Chr	Start	End	Ref	Alt	Func.refGe	Gene.refGe	ExonicFunc AAChange.rgen	omicSuj 1000g20	14(snp138	Polyphen2	_Polyphen2	_LRT_pred	MutationT	a MutationAssessor_pred
chrX	1.23E+08	1.23E+08	G	A	exonic	STAG2	nonsynonyrSTAG2:NM			D	D	D	D	M
chr15	42439924	42439924	т	G	exonic	PLA2G4F	nonsynonyr PLA2G4F:N .			D	D	D	D	M
chr5	1.42E+08	1.42E+08	Т	G	exonic	ARHGAP26	nonsynonyr ARHGAP26: .			D	D	D	D	M
chr5	1.54E+08	1.54E+08	Т	G	exonic	GALNT10	nonsynony: GALNT10:N.			D	D	D	D	н
chr16	720991	720991	A	С	exonic	RHOT2	nonsynonyr RHOT2:NM .			D	D	D	D	н
chr4	96124082	96124082	Т	G	exonic	UNC5C	nonsynony: UNC5C:NM .			D	D	D	D	M
chr17	32962000	32962000	т	G	exonic	TMEM132	nonsynonyi TMEM132E.			D	D	D	D	M
chr22	20819608	20819608	с	G	exonic	KLHL22	nonsynonyr KLHL22:NM.			D	D	D	D	M
chr15	81229165	81229165	A	с	exonic	CEMIP	nonsynonyi CEMIP:NM .			D	D	D	D	м
chr21	33074197	33074197	т	G	exonic	SCAF4	nonsynonyrSCAF4:NM			D	D	D	D	M
chr2	2.16E+08	2.16E+08	A	G	exonic	ABCA12	nonsynonyr ABCA12:NN .			D	D	D	D	M
chr6	2685596	2685596	т	A	exonic	MYLK4	nonsynonyi MYLK4:NM .			D	D	D	D	н
chr16	27460543	27460543	A	С	exonic	IL21R	nonsynonyr IL21R:NM (.			D	D	D	D	M
chr1	22199894	22199894	т	G	exonic	HSPG2	nonsynonyi HSPG2:NM .			D	D	D	D	M
chr15	41029893	41029893	G	т	exonic	RMDN3	nonsynonyi RMDN3:NN			D	D	D	D	М
chr10	73767576	73767576	G	С	exonic	CHST3	nonsynonyi CHST3:NM			D	D	D	D	M
chr3	58145336	58145336	C	A	exonic	FLNB	nonsynony: FLNB:NM (D	D	D	D	M
chr10	72061204	72061204	т	G	exonic	LRRC20	nonsynonyi LRRC20:NN			D	D	D	D	м
chrX	1.53E+08	1.53E+08	G	т	exonic	AVPR2	nonsynonyi AVPR2:NM			D	D	D	D	н
chr11	1.19E+08	1.19E+08	A	c	exonic	DPAGT1	nonsynonyi DPAGT1:NA			D	D	D	D	M
chr5	1.49E+08	1.49E+08	т	G	exonic	U178	nonsynony/11178:NM (D	D	D	D	M
chr13	37012872	37012872	T	G	exonic	CCNA1	nonsynony/CCNA1·NM			D	D	D	D	н
chr21	27372378	27372378	т	c	exonic	APP	nonsynony: APP:NM_O(D	D	D	D	н
chr9	22006176	22006176	T	G	exonic	CDKN2B	nonsynony/CDKN2B·NA			D	D	D	D	M
chr14	22000170	22000170	т	6	exonic	MMP14	nonsynony/ MMP14·NI			D	D	D	D	M
chr1	1 1E+08	1 1F±08	^	c	exonic	AMPD2	nonsynony/ AMPD2:NN			D	D	D	D	M
chr1	1 516+08	1 515+08	c	G	exonic	REYS	nonsynony/ REYS-NM (D	D	D	D	M
chrQ	1.046+08	1 0/6+08	c	т	ovonic	GRINIZA	nonsynony/ GPIN2A:NN		•	D	D	D	D	NA
chr5	1 735+08	1 735+08	т	G	exonic	NKY2-5	nonsynony/ NKY2-5-NM			D	D	D	D	M
chrQ	06060104	06060104	^	C	exonic		nonsynony/W/NK2-S.NM	•	0.5	D	D	D	D	NA
chr1	47292660	47282660	C C	т	exonic	CVD/IR1	nonsynony/ CVP/R1:NN/		•	D	D	D	D	N/
chr11	4/203009	4/203009	c	c	exonic	KIC2	nonsynonyrCfP4B1.Niv.			D	D	D	D	IVI NA
chr17	21619750	21619750	G T	c	exonic	ASICO				D	D	D	D	IVI NA
chr17	31018/30	31016/30		G	exonic	CADNE	nonsynonyrASiC2:NW			D	D	D	D	
chr11	20051805	70790010	A T	c	exonic	CAPINS ACCAN1				D	D	D	D	п
chr10	1 5 6 5 100	1 5 5 5 100		c	exonic	ACSIVIT	nonsynonyrACSW11NWL			D	D	D	D	IVI NA
-h-12	1.300+08	1.300+08	A	с т	exonic	ACAD2				D	D	D	D	
chr12	1 265 109	1 205 .09	C	1	exonic	AGAPZ	nonsynonyrAGAP2:NW		•	D	D	D	D	
chrii	1.266+08	1.266+08	A	C	exonic	DUPS	nonsynonyrDCPS:NM_C.			D	D	D	D	
chr16	2522806	2522806	A	C	exonic	NTN3	nonsynonyr NTN3:NM_1.			D	D	D	D	н
chr19	18119220	18119220		G	exonic	ARRDCZ	nonsynonyrARRDC2:NK.			D	0	D	0	н
chr2	85629027	85629027	A	C	exonic	CAPG	nonsynonyrCAPG:NM_1.			D	D	D	D	
chr1	2.2/E+08	2.2/E+U8	A	C	exonic	PARPI	nonsynonyr PARP1:NVI			D	D	D	D	н
chr1	26515317	26515317	т Т	G	exonic	CNKSKI	nonsynonyrCNKSR1:NN.			D	D	D	D	
chr9	154229/1	15422971	1	G	exonic	SNAPC3	nonsynonyrSINAPC3:NK.			D	0	D	D	
chr20	43/2031/	43/2031/	C C		exonic	COLAND				D	D	D	D	
chr13	1.11E+08	1.11E+08	G	A	exonic	COL4AZ	nonsynonyrCOL4A2:NN.			D	D	D	D	н
chr12	1.33E+08	1.33E+08	A		exonic	EP400	nonsynonyrEP400:NWL.	•		D	0	0	D	
chr12	51868963	51868963	1	A	exonic	SLC4A8	nonsynonyi SLC4A8:NM.		1.51	D	D	D	D	M
chri	1.8/E+08	1.87E+08	A	C	exonic	PLAZG4A	nonsynonyi PLA2G4A:N.	3. * .3		D	D	D	D	IVI N
chr19	13136208	13136208		G	exonic	NEIX	nonsynonyr NFIX:NM_U.	5.C		D	D	D	D	M
chr11	1.2E+08	1.2E+08	A	G	exonic	OAF	nonsynonyrOAF:NM_1 .			D	D	D	D	M
chr2	27/07975	27707975	A	C T	exonic	11172	nonsynonyi IFT172:NM			D	U	D	D	IVI
chr13	52518307	52518307	C		exonic	ATP7B	nonsynonyi ATP7B:NM			D	D	D	D	M
chr22	19213138	19213138	C	A	exonic	CLICL1	nonsynonyi CLTCL1:NM.	•		D	D	D	D	M
chr6	38816525	38816525	T	G	exonic	DNAH8	nonsynonyi DNAH8:NM.	•	•	D	D	U	D	M
chrX	1.06E+08	1.06E+08	A	1	exonic	TBC1D8B	nonsynonyrTBC1D8B:N.	•	•	D	D	D	D	M
chr8	85686850	85686850	C	A	exonic	RALYL	nonsynonyr RALYL:NM			D	D	D	D	M

Supplementary Table 2: List of STAG3 mutations found in a study of 45 patients with BRAF Val600-mutant metastatic melanoma who received vemurafenib or dabrafenib monotherapy by Van Allen et al.⁴

Patient #	Early Resistance	STAG3 Mutation
4	yes	Pro272Ser (Pre-treatment)
26	yes	Arg508GIn (Pre-treatment)
40	no	Ala107fs (Post-relapse)
41	no	Ala644Val, Ala1082Val (Post-relapse)
45	no	Gly129Glu (Post-relapse)
46	yes	Glu1064Lys (Pre-treatment)
51	no	Glu683Lys (Post-relapse)
60	yes	Ser1016fs (Post-relapse)
63	no	Asp30Asn, Asp1221Asn (Post-relapse)

Supplementary Table 3: List of antibodies used in this study.

Antigen	Manufacturer	Clone	Catalog #	Technique and dilution
phospho-ERK (Thr202/Tyr204)	Cell signaling Technology		9101	IHC (1:400); WB (1:3000)
ERK	Cell signaling Technology	137F5	4695	WB (1:3000)
MYC	Cell signaling Technology	9B11	2276	WB (1:1000)
phospho-AKT (Thr308)	Cell signaling Technology	C31E5E	2965	WB (1:1000)
AKT	Cell signaling Technology	C67E7	4691	WB (1:1000)
phospho-S6 (Ser240/Ser244)	Cell signaling Technology		2215	WB (1:3000)
S6	Cell signaling Technology	5G10	2217	WB (1:3000)
SMC1	Cell signaling Technology	8E6	6892	WB (1:1000)
EGFR	Cell signaling Technology		2232	WB (1:1000)
GAPDH	Cell signaling Technology	14C10	2118	WB (1:5000)
STAG2	Santa Cruz	J-12	SC-81852	IHC (1:100); WB (1:1000)
STAG3	Abcam		ab185109	IHC (1:200); WB (1:1000)
DUSP4	Abcam		ab72593	WB (1:1000)
DUSP6	Abcam		ab76310	WB (1:1000)
RAD21	Abcam		ab992	WB (1:1000)
FLAG	Sigma	M2	F3165	IP (1:500); WB (1:1000)
pan-Ras	Thermo Secintific		16117	WB (1:1000)
MITF	Thermo Secintific		MS-771-P1	WB (1:200)
STAG1	Novus Biologicals		NB100-298	WB (1:1000)
СОТ	Biorbyt		orb127540	WB (1:250)
CTCF	Diagenode		C15410210	ChIP (1:500)

STAG2A3247T

Supplementary Figure 1: Identification and characterization of STAG2 and STAG3 mutations in melanoma. (a) HEK293 cells were transfected with FLAG-tagged wild-type STAG2 (WT) or Asp193Asn (DN) mutant. Cell lysates were immunoprecipiated with anti-FLAG antibodies, followed by western blotting. Experiment was performed 3 times. (b) A375, WM902 or M14 Cells were incubated in the presence of 0.3 µM vemurafenib. Cell lysates were collected at indicated times and analyzed by western blotting. Experiment was performed 3 times. (c) Detection of a *STAG2* mutation in WM902-BR cells by Sanger sequencing. (d) HEK293 cells were transfected with FLAG-tagged wild-type STAG3 (WT), Pro272Ser (PS) or Arg508Gln (RQ) mutants. Cell lysates were immunoprecipiated with anti-FLAG antibodies, followed by western blotting. Experiment was performed 3 times. (e) Percentages of post-relapse samples from a total of nine patients treated with BRAFi monotherapy or BRAFi and MEKi combination therapy that showed changes of STAG2 or STAG3 expression, compared to their paired pre-treatment samples, in IHC analyses.

Supplementary Figure 2: Knockdown of STAG2 or STAG3 decreases BRAFi sensitivities in BRAF mutant melanoma cells. (a,b) Viability of SKMEL28 (a) or M14 (b) cells after treatment with varying concentrations of dabrafenib for 3 d. Experiment was performed 3 times. Data are mean ± s.e.m. (c,d) SKMEL28 (c) or M14 (d) cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were treated with dabrafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (e,f) Viability of A375 cells after treatment with varying concentrations of vemurafenib (e) or dabrafenib (f) for 3 d. Experiment was performed 3 times. Data are mean ± s.e.m. (g,h) A375 cells cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were treated with vemurafenib (g) or or dabrafenib (h) for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (i) Viability of A375 cells after treatment with varying concentrations of trametinib for 3 d. Experiment was performed 3 times. Data are mean ± s.e.m. (i) A375 cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were treated with trametinib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (k) Viability of A375 cells after treatment of varying concentrations of dabrafenib and trametinib together at a ratio of 10:1 for 3 d. Experiment was performed 3 times. Data are mean ± s.e.m. (I) A375 cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were treated with dabrafenib and trametinib as indicated for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times.

е

Supplementary Figure 3: Knockdown of STAG2 decreases MEKi sensitivities in NRAS mutant melanoma cells. (a) SKMEL103 cells expressing STAG2 shRNA#23 or scrambled control were treated with trametinib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (b) Viability of SKMEL103 cells after treatment of varying concentrations of trametinib for 3 d. Experiment was performed 3 times. Data are mean \pm s.e.m. (c) 501MEL cells expressing STAG2 shRNA#23 or scrambled control were treated with trametinib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (d) Viability of 501MEL cells after treatment of varying concentrations of trametinib for 3 d. Experiment was performed 3 times. (d) Viability of 501MEL cells after treatment of varying concentrations of trametinib for 3 d. Experiment was performed 3 times. Data are mean \pm s.e.m. (e) Viability of 501MEL cells expressing STAG2 shRNA#23 or scrambled control were seeded at $3x10^4$ per well in 6-well plates and treated with trametinib as indicated in clonogenic growth assays. Experiment was performed 3 times. Scale bar: 5 mm. (f) Conformation of *NRAS* mutation in 501MEL cells by Sanger sequencing.

Supplementary Figure 4: Knockdown of STAG3 decreases BRAFi sensitivities in BRAF mutant melanoma cells. (a) Viability of M14 cells after treatment of varying concentrations of vemurafenib for 3 d. Experiment was performed 3 times. Data are mean ± s.e.m. (b) M14 cells expressing STAG3 shRNA#71 or scrambled control were treated with vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (c,d) A375 (c) or SKMEL28 (d) cells expressing STAG3 shRNA#69 or scrambled control were treated with vemurafenib for 2 h. Cell lysates were used for western blotting for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (e) A375 cells expressing STAG3 inducible shRNA pTRIPZ-shSTAG3#55 were infected with STAG2 shRNA#23 or scrambled control. Cells were cultured in the presence or absence of doxycycline for 5 d. and treated with various concentrations of vemurafenib for 2 h before lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times of a times of a times.

Supplementary Figure 5: Loss of STAG3 impaires the changes in cell cycle progression and reduced the percentages of annexin V-positive apoptotic cells in response to vemurafenib treatment. (a,b) A375 cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were cultured in the presence or absence of doxycycline for 5 d. Cells were treated with or without 1 μ M vemurafenib for 72 h before cell cycle (a) and apoptosis (b) analyses were performed. Experiment was performed 3 times. Data are mean ± s.e.m. The *P* values were determined using two tailed Student's *t-test*, * *P* < 0.05; ** *P* < 0.01; **** *P* < 0.0001. The data variance is similar between groups. (c,d) A375 cells expressing STAG3 inducible shRNA pTRIPZ-shSTAG3#55 were cultured in the presence or absence of doxycycline for 5 d. Cells were treated with or without 1 μ M vemurafenib for 72 h before cell cycle (c) and apoptosis (d) analyses were performed. Experiment was performed 3 times. Data are mean ± s.e.m. The *P* values were treated with or without 1 μ M vemurafenib for 72 h before cell cycle (c) and apoptosis (d) analyses were performed. Experiment was performed 3 times. Data are mean ± s.e.m. The *P* values were determined using two-tailed Student's *t-test*, * *P* < 0.05; ** *P* < 0.05; **

d

а

Supplementary Figure 6: Ectopic expression of STAG2 or STAG3 incrases sensitivities to BRAFi in melanoma cells. (a) WM902-BR cells stably expressing FLAGtagged wild-type STAG3 or control vector were treated with 3 µM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (b) WM902-BR stable expressing of FLAG-tagged wild-type STAG3 or control vector were used in soft agar assays in the presence or absence of 3 µM vemurafenib. Experiment was performed 3 times. Scale bar: 5 mm (c) WM983-BR cells stably expressing FLAG-tagged wild-type STAG2, STAG3 or vector control were treated with 1 µM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (d) LOX-IVMI cells stably expressing FLAG-tagged wildtype STAG2 (WT), Lys1083* (K*) or Asp193Asn (DN) mutants were treated with 3 µM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (e) HEK293 cells were transfected with MYC-tagged BRAF Val600Glu together with FLAG-tagged wild-type STAG2 (WT), Lys1083* (K*) or Asp193Asn (DN) mutants. Cells were treated with 10 µM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (f) HEK293 cells were transfected with MYC-tagged BRAF Val600Glu together with FLAGtagged wild-type STAG3 (WT), Pro272Ser (PS) or Arg508Gln (RQ) mutants. Cells were treated with 10 µM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (g) M14 cells stably expressing FLAG-tagged wild-type STAG2, STAG3 or control vector were treated with 30 nM vemurafenib for 2 h. Cell lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times.

Supplementary Figure 7: Loss of STAG2 does not affect Ras activity or expression of EGFR, MITF or COT in melanoma cells. (a) A375 and SKMEL28 cells were stably infected with lentivirus expressing STAG2 shRNA#23 or scrambled control. RAS activation was assessed by pull-down assays with GST-RAF1-RAS binding domain (RBD), followed by western blotting with indicated antibodies. Experiment was performed 3 times. (b) A375 or SKMEL28 cells expressing inducible STAG2 shRNA pTRIPZ-shSTAG2#60 were cultured in the presence or absence of doxycycline for 5 d before lysates were used for western blotting with indicated antibodies. Experiment 3 times. (c) A375 cells expressing STAG3 shRNA#96 or scrambled control were used for western blotting with indicated antibodies. Experiment 3 times. (c) A375 cells expressing STAG3 shRNA#96 or scrambled control were used for western blotting with indicated antibodies. Experiment 3 times.

Supplementary Figure 8: STAG2 regulates expression of DUSP6 in melanoma cells. (a,b) Total RNA from A375 (a) and M14 (b) cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were isolated, reverse transcribed, and expression levels of *DUSP4* and *DUSP6* were analyzed by qPCR. Levels of mRNA were calculated relative to the absence of doxycycline control, and housekeeping *GAPDH* gene was used as the reference. n = 3 biological replicates. Data are mean ± s.e.m. The *P* values were determined using two-tailed Student's *t-test*, ** *P* < 0.01,;**** *P* < 0.0001. The data variance is similar between groups. (c) Lysates from SKMEL103 or 501MEL cells expressing STAG2 shRNA#23 or scrambled control were used for western blotting with indicated antibodies. Experiment was performed 3 times. (d) Expression of DUSP6 protein in BRAFi-resistant cell lines (BR) and their parental BRAFi-sensitive counterparts (P). Lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times.

Supplementary Figure 9: STAG2 regulates the binding of CTCF to the *DUSP6* locus. (a) M14 cells expressing inducible STAG2 shRNA pTRIPZ-shSTAG2#60 were cultured in the presence or absence of doxycycline for 5 d before ChIP-qPCR assays were performed. Chromatins were immuoprecipitated using CTCF antibody or rabbit IgG. (b) Chromatins of WM902 and WM902-BR were immuoprecipitated using CTCF antibody or rabbit IgG. IP-ed chromatins were examined using qPCR with primers for R1 and R2 regions of *DUSP6* and *H19*. Results are expressed as fold enrichment relative to the non-specific region (R2). n = 3 biological replicates. Data are mean \pm s.e.m. The *P* values were determined using two-tailed Student's *t*-test. * *P* < 0.05; ** *P* < 0.01. The data variance is similar between groups.

d

Supplementary Figure 10: STAG2 regulates ERK activity through controlling expression of DUSP6. (a) M14 cells expressing STAG2 inducible shRNA pTRIPZ-shSTAG2#60 were infected with lentivirus expressing MYC-DUSP6 or control vector. Cells were cultured in the presence or absence of doxycycline for 5 d and treated with 0.3 μ M vemurafenib for 2 h before lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. (b,c) WM902-BR cells (b) and WM983-BR (c) expressing MYC-tagged DUSP6 or vector control were treated with 10 μ M vemurafenib for 2 h. Cell lysates were used for western blotting with indicates. Experiment was performed 3 times. (d) WM902-BR cells expressing MYC-tagged DUSP6 or vector control were treated with in the presence or absence of 1 μ M vemurafinib as indicated in clonogenic growth assays. Experiment was performed 3 times. Scale bar: 5 mm (e) A375 cells expressing STAG2 shRNA#23 or scrambled control were infected with lentivirus expressing Flag-DUSP4 or control vector. Cells were treated with vemurafenib for 2 h before lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times. Experiment was performed 3 times. Experiment was performed 3 times. Scale bar: 5 mm (e) A375 cells expressing STAG2 shRNA#23 or scrambled control were infected with lentivirus expressing Flag-DUSP4 or control vector. Cells were treated with vemurafenib for 2 h before lysates were used for western blotting with indicated antibodies. Experiment was performed 3 times.

е

Supplementary Figure 11: Schematic model for regulation of BRAF-MEK-ERK signaling pathway by STAG2.