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Supplementary Figure 1 QQ plot of Pggpar from simulations under the null. The simulation
is based observed SNP genotypes from the ARIC cohort (Online Methods). Shown is the QQ
plot of p-values from 100 simulations (526 gene sets x 100 simulation replicates) using
fastBAT. Mean y*; value across 100 simulations = 0.9993 (standard error of the mean, s.e.m =

0.015), where y*| is calculated from Prgpar.
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Supplementary Figure 2 Comparison between single-SNP and set-based tests. Results are
from simulations of unlinked SNPs in 450 sets (Online Methods), each causal variant
explaining 0.4% of phenotypic variance. Shown on the y-axis is the —log10(p-value) of the
top associated SNP in a set and shown on the x-axis is the —log10(p-value) from the fastBAT

test using all SNPs of the set. Each dot represents the average from 10 simulation replicates.
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Supplementary Figure 3 The change of power by duplicating a variant in a set. Results are
from simulations of unlinked SNPs in 450 sets (Online Methods). There is only one causal
variant (explaining 0.4% of phenotypic variant) in each set. Shown is the —log10(p-value)
from the fastBAT analysis with the original set plotted against that with the an additional
variant in perfect LD with the causal (in red) or non-causal (in blue) in the original set. Each

dot represents the average from 10 simulation replicates.
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Supplementary Figure 4 QQ plot of Pggpar from simulations under the null. Shown is the
QQ plot of p-values from LD-pruned fastBAT (+* threshold of 0.9) analyses of data simulated
in Supplementary Figure 1. Mean y*; value across 100 simulations = 0.9996 (s.e.m. =

0.015), where y*| is calculated from Prgpar.
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Supplementary Figure 5 Comparison between fastBAT and Pascal using simulations and
analysis of real data. Shown are the results from gene-based analyses using the latest versions
of fastBAT (GCTA version 1.25.2) and Pascal (downloaded on 27 Jan 2016) with default
options. A gene region is defined as £50Kb of UTRs. We used the 1IKGP-EUR data as the
reference set for LD estimation. For Pascal analysis, we used the 1IKGP-EUR data in Pascal
format, which were downloaded as part of the Pascal package. For fastBAT analysis, we used
the IKGP-EUR data (Phase 3; SNP inclusion criteria: missingness rate < 0.05, HWE p >
1x10°° and MAF > 0.0025) downloaded from 1KGP website (URLSs). In panel (a), the GWAS
data were generated from 50 simulations based on real genotypes. In each simulation
replicate, we randomly sampled 10 common SNPs (MAF > 0.01) on chromosome 22 as
causal variants from the 1KGP-imputed GERA study' (n = 53,991 unrelated individuals of
European ancestry), and generated a phenotype based on the simulated causal variants, where
each causal variant explains 0.4% of phenotypic variation. Regression: linear regression
analysis of phenotype on causal variant(s) in each gene region, which is is used as the gold
standard for the comparison between fastBAT and Pascal. In panel (b), we used the GWAS
summary data from the GIANT meta-analysis for height”. There were 30 genes (highlighted
in red) for which Pascal could not determine a p-value. It shows in both panels (a) and (b) that
p-values from Pascal are bounded at about 1x10™"°. This might not be an issue for gene
discovery but could potentially be a problem to prioritise the top associated genes for follow-
up functional studies. fastBAT also outperforms Pascal in computational efficiency, e.g. for
the analysis of height data, fastBAT took 40 sec using 302MB memory, and Pascal took 502

sec using 5,152MB memory (mean values quantified from 50 repeats on identical hardware).
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Supplementary Figure 6 Robustness of fastBAT to variation in LD. Shown are the results
from the fastBAT analysis of the latest GWAS data using the 1KGP-imputed ARIC data as a
reference for LD estimation vs. that using the 1KGP-imputed HRS data for (a) height, (b)
BMI, and (c) schizophrenia.
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Supplementary Figure 7 Analyses of height, BMI and schizophrenia data with different

gene window sizes. In all panels the x-axis shows the -log10(p-value) calculated by fastBAT

for a gene using the default window size, i.e. £50kb of the UTRs. On the y-axis, shown are

the —log10(p-value) calculated by fastBAT for the alternate window sizes of 25kb and 75kb.

The first three panels show the results of all genes for (a) height, (b) schizophrenia and (c)

BMI, respectively. Panel (d) is a combined set of the novel genes for three traits that passed

the commonly used GWAS threshold p-value (Pagsar < 5%10™) with a 50kb window (Table

1), and their respective p-values with alternate windows. All but one of the novel genes were

still significant to a genome-wide significance level (Ppgpat < 2x10°°) with the alternate

window sizes.
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Supplementary Figure 8 Correlation between —log10(Pgsmat) using WGS data and that
using 1KGP-imputed data. Shown are the results from simulations based on UK10K-WGS
data (Supplemental Note). In each simulation replicate, a quantitative trait is simulated using
WGS data, and the analysis was performed using both WGS and 1KGP-imputed data (see
Supplemental Note for details). Common: variants with MAF > 0.01. Rare: variants with
MAF < 0.01.



Supplementary Table 1 Mean y*; values calculated from fastBAT analysis with and without
LD pruning using simulations. The simulations are based on UK10K-WGS data (Online
Methods). The ¥*| value is calculated from Prgpar. The mean »°; value is calculated from 500

simulation replicates.

Distribution of No LD pruning LD pruning with LD pruning with
causal variants #* threshold = 0.99 #* threshold = 0.9
All Causal All Causal All Causal
Random 1.216 4.27 1.229 4.34 1.235 4.13
Clustered 1.229 12.72 1.247 13.34 1.261 13.41
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Supplementary Table 2 Descriptive summary of the GWAS summary data

Version

Trait Sample size Number of SNPs Reference
Latest Height 253,288 2.6M Wood et al. 2014 Nature Genetics®
BMI 339,224 2.6M Locke et al. 2015 Nature®
SCz 36,989 vs. 113,075 9.4M PGC 2014 Nature*
Earlier Height 133,653 2. Lango Allen et al. 2010 Nature®
SCZ 9,394 vs. 12,462 1.3M PGC 2011 Nature Genetics °
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Supplementary Table 3 “Novel” loci identified by fastBAT analyses using the earlier

version of GWAS data for height and schizophrenia. “earlier”: the earlier version of GWAS
data (Supplementary Table 2). “latest”: the latest version of GWAS data (Supplementary

Table 2). “Top Pgwas”: p-value of the top associated SNP in GWAS.

Trait Chr Gene Top Pgwas (earlier) Prgpar (earlier) Top Pgwas (latest)  Prgpat (latest)
SCzZ 1 SDCCAGS 3.26E-06 1.45E-06 3.73E-09 1.46E-10
SCz 3 MUSTNI1 2.25E-06 1.10E-06 4.26E-11 2.71E-11
SCZ 7 MADILI1 5.06E-08 5.41E-08 6.43E-14 5.27E-11
SCZ 12 CACNAIC 5.06E-08 1.88E-07 3.217E-18 2.06E-18
Height 1 SKI 3.07E-06 1.51E-06 3.30E-17 2.16E-19
Height 2 BOK-AS1 7.05E-06 2.49E-07 1.40E-12 1.02E-16
Height 3 HDACI11 1.15E-07 1.04E-06 3.10E-16 5.41E-15
Height 3 SHOX2 4.87E-07 4.72E-07 9.70E-13 3.03E-11
Height 3 ZBTB20 4.49E-06 4.19E-07 6.60E-11 2.20E-16
Height 4 TACC3 6.02E-08 1.91E-07 1.80E-18 6.06E-20
Height 7 RPS2P32 5.56E-08 4.90E-08 3.50E-26 1.96E-28
Height 8 ENPP2 1.29E-06 8.33E-07 3.50E-13 1.05E-16
Height 11 SENCR 6.75E-07 4.89E-07 2.70E-14 1.35E-14
Height 11 TEADI1 6.07E-08 1.46E-07 1.10E-15 1.28E-16
Height 12 CCDC53 1.09E-07 4.18E-08 1.50E-19 1.42E-20
Height 14 RADSIB 3.99E-06 2.20E-07 3.80E-14 2.81E-17
Height 16 HAGHL 2.40E-07 5.87E-08 1.40E-18 4.56E-20
Height 17 GIT1 1.58E-06 3.97E-07 1.10E-12 3.50E-13
Height 17 KCNIJ12 2.00E-07 3.20E-08 8.40E-14 9.43E-14
Height 17 UBE2Z 1.86E-07 1.93E-06 1.50E-16 7.10E-15
Height 19 ADAMTSI10 2.52E-07 6.80E-07 1.40E-18 1.17E-18
Height 19 INSR 1.72E-06 7.76E-08 7.20E-18 7.65E-22
Height 19 NFIC 2.25E-07 6.53E-08 1.30E-20 1.83E-25
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Supplementary Table 4 Novel gene loci identified by fastBAT for height, BMI and
schizophrenia at a genome-wide significance level (P < 2e-6). “Top Pgwas’: p-value of the

top associated SNP in GWAS.

Trait Chr Gene Top associated SNP  Top Pgwas PrastBaT

Height 3 THRB 152360960 1.20E-07 1.33E-09
Height 3 FOXP1 157617596 2.10E-07 1.74E-09
Height 22 UBE2L3 1s5754217 8.50E-08 6.89E-09
Height 8 RBPMS 152979510 5.80E-08 8.11E-09
Height 6 MIR6780B 152487663 1.70E-07 1.63E-08
Height 7 CALU rs1043595 1.20E-07 2.68E-08
Height 2 PCBP1 156546568 1.20E-07 6.23E-08
Height 2 COL6A3 156719451 3.30E-07 6.36E-08
Height 19 APOC4 152288911 2.80E-07 7.40E-08
Height 7 AUTS2 1510262697 2.70E-07 7.93E-08
Height 1 TIPRL 1510737541 5.50E-07 9.86E-08
Height 20 TOMM34 152180292 9.30E-07 1.67E-07
Height 1 CNIH4 1512754832 5.50E-08 1.79E-07
Height 8 TOX rs3780001 1.50E-06 1.95E-07
Height 16 WWOX 154444350 1.40E-07 2.04E-07
Height 11 SYTL2 15290195 8.30E-08 2.46E-07
Height 3 MECOM 152014590 6.40E-07 3.02E-07
Height 1 RBM34 154551650 3.90E-07 3.02E-07
Height 7 KDM7A 157797205 8.00E-08 3.13E-07
Height 12 C12o0rf10 157398691 1.30E-07 3.31E-07
Height 6 KIAA1586 15720884 6.00E-07 3.59E-07
Height 17 ZNF18 157216812 1.40E-06 3.80E-07
Height 18 PSMAS8 154800724 7.60E-07 3.83E-07
Height 12 E2F7 rs310796 2.80E-07 4.13E-07
Height 22 SCUBE1 rs998409 1.50E-06 5.16E-07
Height 6 STX7 157743622 7.10E-08 5.48E-07
Height 2 ATOHS 151465821 7.80E-07 5.82E-07
Height 5 SRFBP1 rs12153375 2.20E-07 6.02E-07
Height 16 TEKTS rs8057807 8.50E-08 6.03E-07
Height 20 MYBL2 15387769 8.00E-06 6.18E-07
Height 19 ARHGAP33 152280743 1.50E-06 6.23E-07
Height 4 SLC7A11 154863767 1.30E-06 6.86E-07
Height 22 TUGI 155749202 5.20E-08 7.31E-07
Height 13 LINC00462 rs12871822 5.70E-08 7.43E-07
Height 4 LIMCH1 1511726922 1.20E-07 7.71E-07
Height 8 ZHX2 rs4128589 6.30E-07 7.80E-07
Height 10 DLGS5 151248690 2.20E-07 8.65E-07
Height 8 TMEM74 157007200 8.80E-08 9.12E-07
Height 6 TRAM?2 15614570 1.90E-06 9.19E-07
Height 17 MED9 157946 8.90E-07 9.73E-07

Height 2 LOC101060091 rs6542180 1.20E-07 1.16E-06
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Supplementary Table 5 Numbers of “novel” gene loci discovered by fastBAT — with and
without LD-pruning — as well as Pascal-Sum and Pascal-Max using the earlier version of
GWAS data for height and schizophrenia. A “novel” gene is “replicated” if p-value of the top
associated SNP in the gene region is < 5e-8 in the latest GWAS data. fastBAT analyses were
performed using the 1KGP-imputed HRS as the reference sample for LD, and Pascal analyses
were performed with 1IKG-EUR data set provided in the Pascal software package.

Height SCZ
Discovered Replicated Discovered Replicated
fastBAT with LD pruning (default) 19 19 4 4
fastBAT without LD pruning 16 16 4 4
Pascal-Sum (default) 15 15 4 3
Pascal-Max 10 9 3 1
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Supplemental Note

1. Comparison between fastBAT with sequence and imputed variants

We performed simulations based on WGS data from the UK10K project’, of which there were
17.6M genetic variants across 3,781 unrelated individuals after quality control®. Following the
strategy proposed in Yang et al.®, we extracted the set of SNPs that can be found on an
[llumina CoreExome array from the UK10K data, and used IMPUTE?2 (ref’) to impute the
subset of SNPs to 1000 Genome Project (1KGP) reference panels'’. The imputed SNPs with
Hardy-Weinberg Equilibrium (HWE) test p-value < le-6 or minor allele counts < 3 were
removed from the analysis.

Following Yang et al.®, to quantify the variation at sequence variants that can be
captured by 1KGP-imputed variants, we simulated traits using WGS data and performed the
analysis using 1 KGP-imputed data. For the ease of computation, we only used data on
chromosome 1. We simulated a quantitative trait using the GCTA simulation function (50
causal variants with a total heritability of 10%) under two scenarios, I) causal variants were
sampled at random from all the sequence variants; II) causal variants are clustered in a few
randomly sampled genomic regions (see Online Method for the method to simulated clustered
causal variants). We then performed the fastBAT analysis for the simulated trait using the

1K GP-imputed genotypes and compared the result with that using WGS data.

2. Benchmarking Performance

We compared the computational performance of the three implementations, PLINK-set,
VEGAS (offline version) and GCTA-fastBAT by re-running the analysis presented in Fig. 1a
on identical hardware, recording the execution time and maximum memory usage, and
reported the mean results of 10 executions. We ran a gene-based PLINK-set test (10°
permutations) with the individual-level genotype and phenotype data in the ARIC cohort

(chromosome 22). The GCTA-fastBAT and VEGAS (command-line version) analyses were

16



performed using the summary statistics. On average, PLINK-set used ~38 hours to complete
the analysis (note that the set-based test implemented in PLINK?2 is much faster than PLINK-
set but still much slower than fastBAT), VEGAS (default parameters) took 36 minutes, and
GCTA-fastBAT (using only a single thread) completed in 8 seconds (see the table below).
The LD-pruned fastBAT analysis has slightly higher memory requirements than that without

LD-pruning but it is still orders magnitude faster than PLINK-set and VEGAS (see the table

below).

Time RAM
PLINK-set 38 hours 10GB
VEGAS 36 min 1.2GB
fastBAT 8.6 sec 48MB
fastBAT with LD pruning 7.9 sec 424MB

3. Running fastBAT

A complete manual is available at the GCTA website (URLSs). The implementation of
fastBAT in GCTA uses a PLINK binary file as the reference set for LD estimation. If no
reference for LD is available it is possible to use the HapMap3 or 1KGP data (URLSs). A list
of gene coordinates is available from the PLINK website (URLSs) and mirrored on the GCTA

website (URLS).
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