

Supplementary Material:

IMGT/StatClonotype for pairwise evaluation and visualization of NGS IG and TR IMGT clonotype (AA) diversity or expression from IMGT/HighV-QUEST

Safa Aouinti^{1,2,*}, Véronique Giudicelli¹, Patrice Duroux¹, Dhafer Malouche², Sofia Kossida^{1,*}, Marie-Paule Lefranc^{1,*}

*Correspondence: Safa Aouinti, Sofia Kossida, Marie-Paule Lefranc safa.aouinti@igh.cnrs.fr, sofia.kossida@igh.cnrs.fr, marie-paule.lefranc@igh.cnrs.fr

1 SUPPLEMENTARY TABLES

Table S1. Properties of the multiple testing procedures. These procedures are used in IMGT/StatClonotype for multiple testing error rate control (9).

Procedures	Type of control	Algorithm structure	Dependence of <i>p</i> -values under <i>H</i> ₀	Properties
Bonferonni [13]	FWER	Single-step	Ignorance	The most conservative
Šidák (SS) [14,15]	FWER	Single-step	Independence	Less conservative than Bonferroni
Holm [16]	FWER	Step-down	Ignorance	Less conservative than Bonferroni
Šidák (SD) [14.15]	FWER	Step-down	Dependence	Similar to Holm
Hochberg [17]	FWER	Step-up	Independence	<i>Step-up</i> of Holm
Benjamini & Hochberg (BH) [18]	FDR	Step-up	Independence	The least conservative
Benjamini & Yekutieli (BY) [19]	FDR	Step-up	Ignorance	More conservative than BH

- FWER (Family-wise error rate): the probability to make one or more false positives.

- FDR (False discovery rate): the expected proportion of false positives.

Table S2. Statistical test results table headers. Headers definitions correspond to their use for significance results using multiple testing procedures (9).

Table column	Description
Gene_Name	The list of IMGT gene names found in the two compared sets from the IMGT/HighV-QUEST output
Gene_Type	The type of genes (V, D or J)
Nb_IMGT_clonotype_AA.set1	The nb of IMGT clonotypes (AA) in the first set from the IMGT/HighV-QUEST output with the corresponding gene indicated in the first column 'Gene_Name'
Proportion.set1	The proportion of IMGT clonotypes (AA) in the first set from the IMGT/HighV-QUEST output with the corresponding gene indicated in the first column 'Gene_Name'
Normalized_proportion.set1	The normalized proportion for 10,000 IMGT clonotypes (AA) in the first IMGT/HighV-QUEST output (set) with the corresponding gene indicated in the first column 'Gene_Name'
Nb_IMGT_clonotype_AA.set2	The nb of IMGT clonotypes (AA) in the second set from the IMGT/HighV-QUEST output with the corresponding gene indicated in the first column 'Gene_Name'
Proportion.set2	The proportion of IMGT clonotypes (AA) in the second set from the IMGT/HighV-QUEST output with the corresponding gene indicated in the first column 'Gene_Name'
Normalized_proportion.set2	The normalized proportion for 10,000 IMGT clonotypes (AA) in the second IMGT/HighV-QUEST output (set) with the corresponding gene indicated in the first column 'Gene_Name'
Difference_proportion	The difference in proportions of IMGT clonotypes (AA) in the two compared sets from the IMGT/HighV-QUEST output with the corresponding gene indicated in the first column 'Gene_Name'
Z	The z -score values to determine the significance of the difference between two proportions
Lower_bound_IC_diff_prop	The lower bound of the 95% confidence interval (CI) for the difference in proportions of IMGT clonotypes (AA) in the two compared sets from the IMGT/HighV-QUEST output
Upper_bound_IC_diff_prop	The upper bound of the 95% confidence interval (CI) for the difference in proportions of IMGT clonotypes (AA) in the two compared sets from the IMGT/HighV-QUEST output
rawp	The <i>p</i> -values obtained from <i>z</i> -scores to evaluate the significance of difference in proportions of IMGT clonotypes (AA) in the two compared sets from the IMGT/HighV-QUEST output
Bonferroni	The adjusted <i>p</i> -values issued from the Bonferroni multiple testing procedure
Holm	The adjusted <i>p</i> -values issued from the Holm multiple testing procedure
Hochberg	The adjusted <i>p</i> -values issued from the Hochberg multiple testing procedure
ŠidákSS	The adjusted p -values issued from the Šidák single-step (SS) multiple testing procedure
ŠidákSD	The adjusted p -values issued from the Šidák single-down (SD) multiple testing procedure
BH	The adjusted <i>p</i> -values issued from the Benjamini & Hochberg (BH) multiple testing procedure
BY	The adjusted p-values issued from the Benjamini & Yekutieli (BY) multiple testing procedure
Test_interpretation	The test interpretation: before adjustment of <i>p</i> -values (rawp) non-significant and after adjustment by the multiple testing procedure: significant differences in proportions validated by the seven procedures (All_p), by two or more procedures (Min_2p) and only by BH (Only_BH)

Table S3. IMGT classes of the 20 common amino acids side chain propertieshttp://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html(from IMGT[®], the international ImMunoGeneTics information system[®] (3), http://www.imgt.org).

Amino acid	Abbro	eviations	IMGT classes of the amino acids side chain properties [15]						
			<u>Hydropathy</u> (3 classes)	<u>Volume</u> (5 classes)	<u>Chemical</u> (7 classes)	Physicochemical (11 classes)	Charge (3 classes)	Polarity (2 classes)	<u>Hydrogen donor</u> or acceptor <u>atom</u> (4 classes)
Alanine	<u>Ala</u>	А	hydrophobic (1)	very small	aliphatic (1)	aliphatic (1)	uncharged(3)	nonpolar (2)	none (4)
Arginine	Arg	R	hydrophilic (3)	large (4)	basic (5)	basic (5)	positive charged (1)	polar (1)	donor (1)
Asparagine	<u>Asn</u>	N	hydrophilic (3)	small (2)	amide (7)	amide (2)	uncharged (3)	polar (1)	donor and acceptor (3)
Aspartic acid	<u>Asp</u>	D	hydrophilic (3)	small (2)	acidic (6)	acidic (6)	negative charged (2)	polar (1)	acceptor (2)
Cysteine	<u>Cys</u>	С	hydrophobic (1)	small (2)	sulfur (3)	sulfur (3)	uncharged (3)	nonpolar (2)	none (4)
Glutamine	<u>Gln</u>	Q	hydrophilic (3)	medium (3)	amide (7)	amide (2)	uncharged (3)	polar (1)	donor and acceptor (3)
Glutamic acid	<u>Glu</u>	E	hydrophilic (3)	medium (3)	acidic (6)	acidic (6)	negative charged (2)	polar (1)	acceptor (2)
Glycine	<u>Gly</u>	G	neutral (2)	very small	aliphatic (1)	G (11)	uncharged (3)	nonpolar (2)	none (4)
Histidine	<u>His</u>	Н	neutral (2)	medium (3)	basic (5)	basic (5)	positive charged (1)	polar (1)	donor and acceptor (3)
Isoleucine	Ile	Ι	hydrophobic (1)	large (4)	aliphatic (1)	aliphatic (1)	uncharged (3)	nonpolar (2)	none (4)
Leucine	Leu	L	hydrophobic (1)	large (4)	aliphatic (1)	aliphatic (1)	uncharged (3)	nonpolar (2)	none (4)
Lysine	<u>Lys</u>	К	hydrophilic (3)	large (4)	basic (5)	basic (5)	positive charged (1)	polar (1)	donor (1)
Methionine	Met	М	hydrophobic (1)	large (4)	sulfur (3)	sulfur (3)	uncharged (3)	nonpolar (1)	none (4)
Phenylalanine	Phe	F	hydrophobic (1)	very large (5)	aromatic (2)	F (7)	uncharged (3)	nonpolar (1)	none (4)
Proline	Pro	Р	neutral (2)	small (2)	aliphatic (1)	P (10)	uncharged (3)	nonpolar (1)	none (4)
Serine	<u>Ser</u>	s	neutral (2)	very small	hydroxyl (4)	hydroxyl (4)	uncharged (3)	polar (2)	donor and acceptor (3)
Threonine	<u>Thr</u>	Т	neutral (2)	small (2)	hydroxyl (4)	hydroxyl (4)	uncharged (3)	polar (2)	donor and acceptor (3)
Tryptophan	<u>Trp</u>	W	hydrophobic (1)	very large (5)	aromatic (2)	W (8)	uncharged (3)	nonpolar (1)	donor (1)
Tyrosine	<u>Tyr</u>	Y	neutral (2)	very large (5)	aromatic (2)	Y (9)	uncharged (3)	polar (2)	donor and acceptor (3)
Valine	<u>Val</u>	v	hydrophobic (1)	medium (3)	aliphatic (1)	aliphatic (1)	uncharged (3)	nonpolar (1)	none (4)

- Numbers between parentheses indicate the class number, for a given property.

- Color codes of each class (1): http://www.imgt.org/IMGTScientificChart/RepresentationRules/colormenu.php