Supplementary Information

Predicting the synergy of multiple stress effects

Matthias Liess,^{1,2*} Kaarina Foit,¹ Saskia Knillmann,¹ Ralf B. Schäfer,³ Hans-Dieter Liess⁴

Affiliation:

¹ UFZ, Helmholtz Centre f. Environmental Research, Dept. System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
² RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
³ University Koblenz-Landau, Institute for Environmental Sciences, Fortstrasse 7, 76829 Landau in der Pfalz, Germany
⁴ University of the Bundeswehr München, Faculty EIT, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

*Correspondence to: matthias.liess@ufz.de

Table S1 | **List of studies included for meta-analysis.** Stress determined as the difference between control survival without and with environmental stress (Environment. stressor-mortality (%), based on fitted curves, see Figure S1) and sensitivity data (LC10 and LC50 using log-logistic concentration-response curves). LC10-Shift and LC50-Shift calculated as the concentration of LCx without environmental stress divided by the concentration of LCx* with environmental stress. MoA (Mode of Action): VGSC - voltage gated sodium channel modulator; FFR - formation free radicals, reducing reactive oxygen species; AChE - acetylcholinesterase inhibitor. The meta-analysis comprised 23 pairs of concentration-response relationships. These pairs included 6 different environmental stressors, 5 toxicants and 10 species.

Study ID	Reference	Species	Toxicant - substance	Toxicant - MoA	Toxicant - type of exposure	Environmental stressor - type	Environment. stressor - mortality (%)	Time after toxic. exposure (d)	LC10-Shift	LC50-Shift
1	27	Daphnia magna	Fenvalerate	VGSC mod.	pulse	Food limitation	0.0	8	2.1	1.8
2	28	Daphnia magna	Fenvalerate	VGSC mod.	pulse	Maternal food	0.0	7	3.1	2.6
3	29	Bufo americanus	Malathion	AChE inhi.	continuous	Predator cues	0.0	10	1.3	1.1
4	29	Rana pipiens	Malathion	AChE inhi.	continuous	Predator cues	0.0	7	1.2	1.5
5	19	Ephoron virgo	Copper	FFR, RROS	continuous	Low oxygen	0.0	4	5.0	2.0
6	30	Cloeon dipterum	Esfenvalerate	VGSC mod.	pulse	Food limitation	0.0	8	4.7	1.4
7	29	Rana sylvatica	Malathion	AChE inhi.	continuous	Predator cues	0.0	5	1.1	1.0
8	31	Rana pipiens	Carbaryl	AChE inhi.	continuous	Predator cues	0.0	8	1.4	1.1
9	11	Paramoera walkeri	Copper	FFR, RROS	continuous	Food limitation	0.6	21	1.2	1.1
10	31	Rana clamitans	Carbaryl	AChE inhi.	continuous	Predator cues	1.0	9	7.6	3.7
11	31	Rana catesbeiana	Carbaryl	AChE inhi.	continuous	Predator cues	1.0	7	3.6	1.9
12	31	Bufo americanus	Carbaryl	AChE inhi.	continuous	Predator cues	1.5	9	4.0	1.4
13	29	Rana clamitans	Malathion	AChE inhi.	continuous	Predator cues	2.4	12	1.0	1.3
14	31	Hyla versicolor	Carbaryl	AChE inhi.	continuous	Predator cues	2.5	7	1.0	1.2
15	29	Rana catesbeiana	Malathion	AChE inhi.	continuous	Predator cues	6.1	7	0.4	0.9
16	30	Cloeon dipterum	Esfenvalerate	VGSC mod.	pulse	Food limitation	6.7	8	12.9	2.0
17	29	Hyla versicolor	Malathion	AChE inhi.	continuous	Predator cues	13.3	10	5.1	2.2
18	11	Paramoera walkeri	Copper	FFR, RROS	continuous	Food limitation	13.9	21	13.0	12.5
19	32	Daphnia spp.	Esfenvalerate	VGSC mod.	pulse	Intrasp. compet.	22.8	4	3.6	1.6
20	33	Hyla versicolor	Carbaryl	AChE inhi.	continuous	Predator cues	24.5	16	17.6	7.7
21	34	Daphnia spp.	Esfenvalerate	VGSC mod.	pulse	Water level alt.	37.7	8	26.4	17.3
22	32	Daphnia spp.	Esfenvalerate	VGSC mod.	pulse	Intrasp. compet.	42.1	4	51.8	5.9
23	11	Paramoera walkeri	Copper	FFR, RROS	continuous	UV radiation	47.9	21	140.8	42.1

Figure S1 | Survival data from the meta-analysis. —

- Continued on next page -

Figure S1 | Survival data from the meta-analysis. Concentration-response relationships observed from empirical studies. Pairs of concentration-response relationships are displayed - without environmental stress (blue points, line) and with environmental stress (red points, line). Survival is either given as % survival of the control or as number of individuals, as

provided from the original publication. The red dashed line represents the modelled concentration-response relationship under environmental stress using the SAM approach. The SAM modelling was only performed when the environmental stress resulted in mortality greater than 1%.

Figure S2 |SAM-modelled shifts of LC10 and LC50 in comparison to observations based on the study specific

concentration-response curves from each of the 23 studies in the meta-analysis. The toxicant sensitivity is expressed as shift of the LCx (A: LC10/LC10*; B: LC50/LC50*). The environmental stress of studies resulted in a mortality greater than 0 % (black points) or equal to 0 % (grey points). The diagonal lines represent the ideal correlation (45° line). Goodness of fit was quantified as R² that gives the proportion of variance explained by the model (A: R² = 0.49; B: R² = 0.38). For quantification we considered only those studies with observed environmental stress mortality greater than 0% (black points) and positive shifts of LC10 and LC50.

Figure S3 | CA-modelled shifts of LC10 and LC50 in comparison to observations based on the study specific concentrationresponse curves from each of the 23 studies in the meta-analysis. The toxicant sensitivity is expressed as shift of the LCx (A: LC10/LC10*; B: LC50/LC50*). The environmental stress of studies resulted in a mortality greater than 0 % (black points) or equal to 0 % (grey points). The diagonal lines represent the ideal correlation (45° line). Goodness of fit was quantified as R² that gives the proportion of variance explained by the model (A: R² = -0.88; B: R² = -0.77; with negative R² indicating that CA is better explained by the average of observations). For quantification we considered only those studies with observed environmental stress mortality greater than 0% (black points) and positive shifts of LC10 and LC50.

References:

- 27 Pieters, B. J. *et al.* Influence of food limitation on the effects of Fenvalerate pulse exposure on the life history and population growth rate of Daphnia magna. *Environmental Toxicology and Chemistry* **24**, 2254-2259 (2005).
- 28 Pieters, B. J. & Liess, M. Maternal nutritional state determines the sensitivity of Daphnia magna offspring to shortterm Fenvalerate exposure. *Aquat Toxicol* 76, 268-277, doi:10.1016/j.aquatox.2005.09.013 (2006).
- 29 Relyea, R. A. Synergistic impacts of malathion and predatory stress on six species of North American tadpoles. *Environ Toxicol Chem* 23, 1080-1084, doi:10.1897/03-259 (2004).
- 30 Beketov, M. A. & Liess, M. Acute contamination with esfenvalerate and food limitation: chronic effects on the mayfly, Cloeon dipterum. *Environ Toxicol Chem* 24, 1281-1286 (2005).
- 31 Relyea, R. A. Predator cues and pesticides: A double dose of danger for amphibians. *Ecological Applications* **13**, 1515-1521 (2003).
- 32 Knillmann, S., Stampfli, N. C., Beketov, M. A. & Liess, M. Intraspecific competition increases toxicant effects in outdoor pond microcosms. *Ecotoxicology* 21, 1857-1866, doi:10.1007/s10646-012-0919-y (2012).
- 33 Relyea, R. A. & Mills, N. Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor). *Proceedings of the National Academy of Sciences of the United States of America* 98, 2491-2496, doi:Doi 10.1073/Pnas.031076198 (2001).
- 34 Stampfli, N. C. *et al.* Two stressors and a community: effects of hydrological disturbance and a toxicant on freshwater zooplankton. *Aquat Toxicol* **127**, 9-20, doi:10.1016/j.aquatox.2012.09.003 (2013).