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Structure-Based Prediction of Protein-Folding
Transition Paths
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ABSTRACT We propose a general theory to describe the distribution of protein-folding transition paths. We show that transi-
tion paths follow a predictable sequence of high-free-energy transient states that are separated by free-energy barriers. Each
transient state corresponds to the assembly of one or more discrete, cooperative units, which are determined directly from
the native structure. We show that the transition state on a folding pathway is reached when a small number of critical contacts
are formed between a specific set of substructures, after which folding proceeds downhill in free energy. This approach suggests
a natural resolution for distinguishing parallel folding pathways and provides a simple means to predict the rate-limiting step in a
folding reaction. Our theory identifies a common folding mechanism for proteins with diverse native structures and establishes
general principles for the self-assembly of polymers with specific interactions.
INTRODUCTION
Protein folding has been described as both exceedingly
complex and remarkably simple (1–6). Although kinetic
measurements are often consistent with simple two-state
folding behavior (7), experiments probing folding at higher
resolution have provided evidence of considerable addi-
tional complexity (8,9). Direct observations of folding
transition paths in both simulation (10,11) and experiment
(12–14), including demonstrations that folding pathways
can be redirected under various conditions (15–17), can pro-
vide insight into these crucial yet fleeting events. However,
the factors that determine the distribution of folding transi-
tion paths and the detailed kinetics along these pathways
remain poorly understood.

To address this question, we propose a general theory to
predict the folding transition paths of globular proteins. We
adopt a simplified representation of a protein based on
native contacts that are derived from a crystal structure
(18). Discrete Ising-like models (19–21) have had great
success in reproducing a wide variety of experimental
measurements (22,23) without computationally expensive
simulations. However, due to the inherent combinatorial
complexity of such models, previous studies have relied
on the simplifying assumption that regions of native
structure can only grow in one or two contiguous se-
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quences. This assumption is justified for very small proteins
on the basis of helix-coil theory, but it limits the applica-
bility of Ising-like models to proteins with relatively
simple native-state topologies. Here we take an alternative
approach that enforces the intrinsic kinetic connectivity of
the microstates and allows for a much larger space of phys-
ically realistic combinations of native contacts. As a result,
we are able to show that proteins fold by assembling
discrete substructures via a small number of well-defined
pathways. In contrast to previous studies, our assumptions
do not impose a specific mechanism of folding and are
thus applicable to proteins with complex native-state
topologies.

Our central finding is that folding can be described as a
predictable sequence of transitions between discrete tran-
sient states. First, we explain how kinetically distinct tran-
sient states can be predicted on the basis of a protein’s
native-state topology by developing a principle of substruc-
ture cooperativity. We then show that the resulting
network of transient states leads to a mechanistic descrip-
tion of protein-folding transition paths. Consequently, we
are able to distinguish the small set of native contacts
that are made precisely at the rate-limiting step from the
many contacts that are formed earlier on a folding transi-
tion path. As an example, we apply our theory to ubiquitin,
a 76-residue a/b protein, for which detailed atomistic
folding simulations and experimental characterizations are
available. We then show that our predictions are consistent
with kinetic measurements on a large number of proteins.
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Our results have implications both for understanding the
folding transition paths of naturally occurring proteins at
a detailed level and, more generally, for manipulating the
self-assembly pathways of designed polymers with specific
interactions.
MATERIALS AND METHODS

Theory

For a protein to fold to a thermodynamically stable structure, the native

state must be stabilized by a large energy gap relative to the many alterna-

tive configurations (1–4). Analysis of atomistic folding simulations pro-

vides strong evidence that the native contacts also play a central role in

determining protein-folding transition paths (24). Here we develop a native-

centric, coarse-grained polymer model, where the pairwise contacts that

define the completely folded state are associated with energetically favor-

able bonds. We define native residue–residue interactions according to a

fixed cutoff distance (4 Å) between heavy atoms in a crystallographically

determined native structure (Fig. 1, a and b). We further restrict these inter-

actions to residues that are more than one Kuhn length, taken here to be two

residues, apart in the protein sequence. This excludes native contacts that

are typically not independent due to their close proximity and are likely

to be present in the unfolded state.

The essential advantage of our theory is the identification of kinetically

distinct transient states. This aspect is crucial because it allows us to define

a free-energy landscape that preserves the kinetic connectivity of micro-

states in the full combinatorial model. Moreover, this reduction of

complexity to a smaller number of coarse-grained configurations allows

us to obtain a mechanistic description of protein-folding transition paths.

In the following sections, we outline the steps required for this approach.

First, we describe the statistical mechanics of the model and the choices

of adjustable energetic parameters. We then explain the physical justifica-

tion for decomposing a protein into discrete, cooperative substructures,

which contribute to the kinetically distinct states. (Free-energy calculations

and evidence from atomistic molecular dynamics simulations in support of

our approach are presented in the Results.) Lastly, we show how these

coarse-grained states can be incorporated into a master-equation framework

for predicting protein-folding transition paths.
a b

c d

FIGURE 1 Construction of the contact-graph model. (a) A portion of a

b-hairpin, with sequential residues indicated by alternating colors. We as-

sume that the residues are segmented at the N–Ca bond. (b) An abstract

graph representation of this structure, where vertices correspond to residues

and edges to residue–residue contacts. The polymer backbone is indicated

by the thick line. (c) A schematic contact graph and (d) an allowed micro-

state, with independent structured regions indicated by dashes. Within each

structured region, all possible native contacts are formed. To see this figure

in color, go online.
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Contact-graph model

Microstates in this discrete model refer to coarse-grained representations of

the polymer: each microstate comprises an ensemble of microscopic poly-

mer configurations in which the residues make a specific combination of

native contacts. The microstate in which all specific contacts are formed

corresponds to the completely folded configuration, while microstates

with a subset of specific contacts are associated with partially folded con-

figurations. However, not all combinations of contacts correspond to phys-

ical configurations, because the conformational space of the polymer is

restricted by steric constraints (the residues occupy finite volumes that

cannot overlap) and the chain connectivity (sequential residues are cova-

lently linked). We therefore limit the set of allowed microstates to physi-

cally realistic configurations by imposing two rules. First, we note that

every microstate with a specific set of contacts can be decomposed into

disconnected structured regions (Fig. 1 c). Within each structured region,

it is reasonable to assume that the native contacts between interacting res-

idues are geometrically correlated due to their close spatial proximity. We

therefore require that all possible native contacts be formed within each

structured region (Fig. 1 d). Second, to define a self-consistent configura-

tional entropy, we do not allow microstates with disordered loops of con-

tact-forming residues (i.e., residues that make contacts in the native state)

that are shorter than one Kuhn length (see the Supporting Material).

Because the microstates correspond to ensembles of constrained polymer

configurations, each microstate g is associated with a free energy, FðgÞ,

FðgÞ
kBT

¼
X
c˛CðgÞ

(
ðNc � 1Þ m

kBT
þ
X
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kBT

)
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where Nc is the number of residues in each structured region c˛CðgÞ, T is

the absolute temperature, and kB is the Boltzmann constant. Within each

structured region, we account for the loss of configurational entropy per

ordered residue, m=T, and the energetic contributions, feuvg, of all native
contacts. (The notation 1cuv indicates unity if a native contact is present be-

tween residues u and v in structured region c, and zero otherwise.) The re-

maining entropic penalty, DSl, accounts for closed loops of noninteracting

residues. Assuming Gaussian polymer statistics (25) for sequences longer

than one Kuhn length b, we sum the entropic penalties for all loops,
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where the sum runs over every loop in the microstate g, l˛LðgÞ, jl j is the
number of noninteracting residues in the loop, rðlÞ is the distance between
the fixed ends of the loop, and d ¼ 3 is the spatial dimension (see the Sup-

porting Material).

To apply Eqs. 1 and 2, we must choose the parameters m and feuvg. On
the basis of atomistic simulations (26), we have chosen m ¼ 2kBT; values

between 1.5 and 2.5 kBT give very similar results. The energy of each

bond is estimated from the crystal structure by counting the number of

heavy-atom contacts among residues u and v and nncuv, and by determining

whether a main-chain hydrogen bond exists; the hydrogen-bond contribu-

tion is ahb times that of a single heavy-atom contact. Because native-centric

models are known to overstabilize helices (27,28), we weaken all energies

associated with helical contacts by a factor ahelix. The bond energy formula

is thus euv ¼ �ðahelixÞ1
helix
uv ½nncuv þ ahb1

hb
uv �, where 1hbuv indicates the presence

of a hydrogen bond and 1helixuv indicates a helical contact. The constants

ahelix ¼ 5=8 and ahb ¼ 16 were chosen empirically to maximize the agree-

ment with experiments on protein G (see Fig. S2 and Table S1 in the Sup-

porting Material). The inverse temperature is then tuned to achieve a fixed
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free-energy difference between the unfolded and folded ensembles (see the

Supporting Material).
Identification of cooperative substructures and
transient states

We now seek to identify kinetically separated folding intermediates by

examining the factors that give rise to free-energy barriers between micro-

states. In the contact-graph model, all free-energy barriers are purely

entropic, because the native contacts are assumed to be energetically favor-

able. The most significant free-energy barriers arise from the formation of

loops, which entail an entropic penalty of at least ðbþ 1Þm=T that is not

immediately compensated by energetically favorable native contacts.

Once an initial loop has been formed, the recruitment of residues that are

adjacent in the protein sequence may result in a net decrease in the free en-

ergy. As a result, the model naturally gives rise to cooperative substructures,

i.e., sets of contacts that require the formation of a single loop and thus

share a common free-energy barrier. As in the helix-coil (29) and kinetic-

zipper (30) models of peptide assembly, the sets of contacts comprising

an individual substructure are typically bistable: either none of the contacts

are made in the high-entropy state, or else many contacts are required to

compensate for the loss of conformational entropy in the low-energy state.

We identify groups of contacts that constitute the distinct substructures of

a contact graph using the following algorithm. First, we find all pairs of con-

tacts where the interacting residues are either identical or are adjacent on

the polymer backbone; that is, two contacts ðu; vÞ and ðr; sÞ are linked if

r � u ˛f�1; 0; 1g and s� v ˛f�1; 0; 1g. These pairs of contacts define a

backbone-dual graph in which the vertices represent native interactions

and the edges indicate adjacency along the polymer backbone (Fig. 2, a

and b). We then decompose this graph into connected components, retain-

ing only those components with at least six contacts to counter the mini-

mum entropic cost of forming a Kuhn-length loop. The role of contacts

that are not assigned to substructures is discussed below. While the sub-

structures identified by this algorithm often align with elements of second-

ary structure, this does not have to be the case, because the substructures are

defined purely on the basis of the three-dimensional native structure.

Advancing toward the folded state requires building up successive

substructures, each of which is associated with a free-energy barrier. A tran-
a

b

a

b
1

c

a b

ab

FIGURE 2 Identification of substructures and topological configurations.

(a) An example contact graph, with contacts colored by substructure. Each

substructure requires the formation of one loop in the polymer backbone.

Unassigned contacts are shown in gray. (b) The backbone-dual graph, in

which the vertices represent native contacts (see text). (c) A substructure

is part of this topological configuration if one or more of its contacts are

formed in the largest structured region. The unassigned contacts contribute

to the stability of configuration ab. Arrows indicate allowed transitions be-

tween topological configurations that differ by the addition or removal of

one substructure. To see this figure in color, go online.
sition path must cross each of these barriers one at a time, regardless of

the precise order in which the contacts are formed. These intermediate

states can be described by a discrete set of topological configurations that

indicate the assembly of one or more substructures (Fig. 2 c). In the

remainder of this work, we simplify our analysis by tracking only the

largest native-like cluster of residues. As a result, each topological config-

uration refers to the assembly of a specific set of substructures within a

single structured region. The validity of this assumption is discussed in

the Results.

Native contacts that are not assigned to substructures contribute to the

stability of topological configurations that consist of multiple substructures

in a single structured region. For example, in Fig. 2, the unassigned contacts

shown in gray contribute to topological configuration ab but not to config-

uration a or b. In cases where some residues do not participate in any of the

identified substructures, we define a separate native configuration that con-

tains all substructures plus the additional contacts involving these residues.

Because such residues do not contribute to any of the intermediate topolog-

ical configurations, they do not affect the folding transition paths predicted

by our theory; the contacts formed by these residues serve only to stabilize

the native state.

Because of the significant free-energy barriers associated with loop for-

mation, cooperative substructures are predicted to have long lifetimes

compared to individual native contacts. Furthermore, the free-energy bar-

riers between topological configurations are expected to give rise to meta-

stability: microstates that share the same set of loops can interconvert

rapidly, while transitions between topological configurations that differ

by the addition or removal of one substructure occur on a much slower time-

scale. These topological configurations therefore serve as an appropriate set

of coarse-grained, transient states for analyzing the dynamics of protein-

folding transition paths.
Prediction of folding transition paths

Having established a structural definition of a transient state, we can now

construct a rate matrix to describe stochastic transitions between the

coarse-grained configurations. First, we calculate the free-energy of each

configuration, Fi, by summing over all microstates that conform to the

topological configuration i: Fih� kBT ln
P

fggiexpð�Fg=kBTÞ. The

compatible microstates fggi are those that have a single structured region

and contain one or more contacts from each substructure comprising

configuration i. This sum can be calculated efficiently via Monte Carlo inte-

gration using the technique described in Jacobs et al. (31) (and see text in

the Supporting Material). This calculation also yields the equilibrium

probability of contact formation within each topological configuration,

h1uviih
P

fggi1uvðgÞexpð�Fg=kBTÞ. As we shall demonstrate, the most

probable microstates within a topological configuration may not form all

possible contacts.

We then calculate the free-energy barriers, DFy
i/j, between topological

configurations i and j that differ by the addition or removal of one substruc-

ture. We consider two mechanisms of substructure addition: either the for-

mation of a new loop via a single contact or the consolidation of a

preformed substructure with the existing structured region. The former

mechanism is applicable when the added substructure shares residues

with substructures in the existing structured region. In contrast, the latter

mechanism is applicable when the added substructure and the existing

structured region have no residues in common but nevertheless form con-

tacts in the native structure. In both cases, we calculate the mean-field prob-

ability of forming an initial contact with one or more residues of the new

substructure, assuming that the existing structured region is in local equilib-

rium. The details of these calculations, which take into account fluctuations

within each topological configuration, are provided in the Supporting

Material.

Finally, we construct a rate matrix to describe transitions between topo-

logical configurations. The dimensionless rates kij obey detailed balance

and are assumed to follow from the Metropolis criterion,
Biophysical Journal 111, 925–936, September 6, 2016 927
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kij ¼
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�P
j0si

kij0 if i ¼ j;

0 if i; j not adjacent:

(3)

From this rate matrix, it is straightforward to obtain ensemble-averaged

properties of transition paths between the unfolded and folded ensembles

using transition-path theory (32). Of particular interest are the commitment

probabilities, pfoldðiÞ (33), and the folding fluxes, fij , between adjacent con-
figurations. In addition, we can predict folding intermediates by calculating

the average time spent in each configuration within the transition-path

ensemble. Details are provided in the Supporting Material.
RESULTS

Proteins fold via a sequence of transient states

Free-energy calculations support the interpretation of the
substructures identified in the Materials and Methods as
the minimal cooperative units on a folding transition path.
As an example, we present calculations for ubiquitin in
Fig. 3; its seven substructures are indicated on the contact
map in Fig. 3 a. When plotted as a function of the total num-
ber of interacting residues, N, we find that every topological
configuration is associated with a single local free-energy
minimum (Fig. 3 b). Single-substructure configurations are
typically unstable, as the free energy increases with the num-
ber of interacting residues. In contrast, the energetically
favorable native contacts in multiple-substructure configura-
tions more than compensate for the loss of conformational
a b

c

FIGURE 3 Predicted folding free-energy landscapes for ubiquitin. (a) The c

indicating the discrete substructures a–g described in the Materials and Metho

the total number of interacting residues, N. The number of structured regions,

The shaded region shows the one-dimensional free-energy profile. (c) The free en

bled substructures, n. All free energies are calculated relative to the state Ø, and

unfolded ensembles. The shading indicates the fraction of the net folding flux th

folding flux are shown, except in (c), n ¼ 1, where all substructures are labeled
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entropy due to loop formation. However, at the local mini-
mum in each of these configurations, the polymer is unlikely
to form all possible native contacts for entropic reasons: there
are many more partially assembled microstates, and some
residues make too few native contacts to offset the entropic
cost of ordering completely. As a result, the free-energy min-
imum typically occurs at a value of N that is less than the
maximumnumber of residues in each configuration. Because
of this competition between stabilizing native contacts and
various entropic contributions, the locations of these free-
energy minima are temperature-dependent.

Plotting the free-energy landscape as a function of the
number of assembled substructures more clearly shows the
free-energy barriers between adjacent topological configu-
rations (Fig. 3 c). Microstates belonging to different topo-
logical configurations are kinetically separated by at least
one entropic barrier and cannot interconvert rapidly. The ex-
istence of significant free-energy barriers between unimodal
free-energy basins supports the assertion that the topological
configurations constitute transient states on the transition
paths between the completely unfolded and native states.
Alternate pathways may be traversed, depending on the
order in which the free-energy barriers between configura-
tions are crossed. Yet in general, we find that only a small
number of parallel pathways contain the vast majority of
the reactive flux between the unfolded and native states.
In Fig. 3, b and c, the shading of each topological configu-
ration indicates the fraction of the net folding flux,
fþij hmaxðfij � fji; 0Þ, passing through that configuration on
folding transition paths; the many other configurations
with negligible net folding flux are not shown.
ontact map obtained from the crystal structure of ubiquitin (PDB: 1UBQ)

ds. (b) The free energy of each topological configuration as a function of

C, is 1 for all configurations except the unfolded state, Ø, where C ¼ 0.

ergy of each topological configuration as a function of the number of assem-

the inverse temperature is tuned to achieve equal stabilities of the native and

rough each configuration. Only configurations with at least 10% of the net

. To see this figure in color, go online.
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Free-energy landscapes predict a common
folding mechanism

These multimodal free-energy landscapes point to a com-
mon folding mechanism. As expected on the basis of
Eq. 1, our free-energy calculations indicate that there are
no significant barriers separating microstates within individ-
ual topological configurations. Instead, the relevant barriers
are found between topological configurations. These land-
scapes thus predict that folding proceeds by the stepwise
consolidation of cooperative structures within a single struc-
tured region. The transition state on a folding pathway is
reached upon the formation of a specific set of substructures,
after which all subsequent barriers on the pathway are lower
in free energy and folding can proceed downhill to the
native state.

To preserve the kinetic connectivity of the transient states,
the folding free-energy landscape is best represented by a
network of the discrete topological configurations. In
Fig. 4 a, we show all configurations containing at least
10% of the net folding flux. Arrows indicate the net folding
flux between configurations, while the shading indicates the
fraction of the total transition-path time spent in each
configuration. The transitions that pass through the rate-
limiting step, from which the protein has an equal probabil-
a b

c

FIGURE 4 Specific contacts are formed at the rate-limiting step on the

folding transition paths of ubiquitin. (a) The folding network of ubiquitin,

showing the topological configurations containing at least 10% of the net

folding flux (see text). (b) Below the diagonal, the equilibrium distribution

of native contacts in topological configuration abe. Above the diagonal, the

difference between the equilibrium contact distributions of configurations

abe and abde. Black indicates a probability of 1, while white indicates 0.

(c) The difference in equilibrium contact formation, Dh1uvi, between con-

figurations abe and abde, averaged over each residue. The total number

of native contacts made by residue u is du. A small number of essential

long-distance contacts, primarily involving residues 13–17, 27–41, and

69–71, are formed at the transition between these configurations. To see

this figure in color, go online.
ity of folding or unfolding, are highlighted. This kinetic
network shows that substructures tend to assemble in a
remarkably well-ordered sequence, despite the stochastic
nature of the transitions between transient states. It is impor-
tant to note that this ordering is not dictated simply by the
stability of the isolated structures: the sequence of events
on folding transition paths does not match the ranking of
the substructure free energies (n ¼ 1) in Fig. 3 c. Instead,
the most likely pathway depends on the stability of the inter-
mediate configurations and the barriers between them,
which in turn depend on the contacts between substructures.

Although many proteins are commonly described by two-
state kinetics, our analysis indicates that folding transition
paths may have greater kinetic complexity due to the pres-
ence of transient, high-free-energy folding intermediates.
For comparison, a one-dimensional profile showing the
free energy as a function of the number of interacting resi-
dues is shown in Fig. 3 b. In contrast to our approach, this
representation of the folding landscape does not distinguish
among microstates in directions orthogonal to the order
parameter and consequently hides the barriers that prevent
microstates with similar numbers of interacting residues
from interconverting rapidly. Decomposing the landscape
into topological configurations provides more detailed in-
sights into the folding free-energy barrier and the tradeoff
between native-contact formation and the loss of conforma-
tional entropy. In particular, our analysis shows that a spe-
cific set of loops in the polymer backbone must be formed
for subsequent native contacts to lower the free energy as
folding progresses toward the native state.
Specific contacts are formed at the rate-limiting
transition

Fig. 4 a shows that the assembly of topological configura-
tion abde or abdef is required for ubiquitin to reach the
folded ensemble. Common to both of the highlighted transi-
tions is the consolidation of the helix (substructure d) with a
partially formed b-sheet (substructures a, b, and e); the final
hairpin of the b-sheet (substructure f) is optional and thus
largely irrelevant. This analysis provides a clear mechanistic
description of the essential rate-limiting event on a folding
transition path. In addition, our analysis predicts that the
majority of the transition-path time is spent in the meta-
stable configurations just before and after the transition,
configurations ab–abdef.

Importantly, this approach allows us to distinguish be-
tween the native contacts that are prerequisite for reaching
the transition state and those that are formed precisely at
the rate-limiting step. As illustrated in Fig. 4 b, a relatively
small number of native contacts are involved in the rate-
limiting step on ubiquitin’s folding pathway. Shown below
the diagonal in this plot is the contact distribution in the pre-
transition configuration abe, assuming local equilibrium in
this metastable state. Not all contacts within the three
Biophysical Journal 111, 925–936, September 6, 2016 929
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contributing substructures are equally probable; in partic-
ular, residues near the extremities of the b-sheet are more
likely to be disordered. To determine the contacts that are
formed upon the incorporation of the helix into the largest
structured region, we subtract the union of the contact distri-
butions of configuration abe and the isolated substructure
d from the post-transition configuration abde. We find that
a specific set of ~15 long-range contacts between the helix
and partial b-sheet is essential for the rate-limiting transi-
tion. The residue-averaged contact differences (Fig. 4 c)
indicate that these specific contacts primarily involve resi-
dues 13–17, 27–41, and 69–71. As we shall show below,
this distribution of rate-limiting contacts is significantly
different from the complete set of contacts present at the
transition state.
Comparison with atomistic molecular dynamics
simulations

The accuracy of these predictions can be tested by compar-
ison with atomistic molecular dynamics simulations. For
a b

dc

FIGURE 5 Verification of the assumptions and predictions of the theory using

path (TP) duration, more than two native-like segments are formed in the largest s

with a minimum number of residues in the transition-path ensemble. (c) The frac

(d) The mean, t, versus standard deviation, s, of the topological-configuration l

bution. To see this figure in color, go online.
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this purpose, we obtained unbiased simulation trajectories
of the reversible folding and unfolding of wild-type ubiqui-
tin from Piana et al. (34). We shall focus our attention on the
native contacts formed during the ~1–10 ms-long transition
paths (two folding and eight unfolding) that were captured
from six independent simulations. The details of our anal-
ysis are provided in the Supporting Material; the molecular
dynamics simulations are described in Lindorff-Larsen et al.
(11) and Piana et al. (34).

We first tested the underlying assumptions of our theoret-
ical approach. Fig. 5 a shows a histogram of the number of
segments within the largest structured region in the
ensemble of transition-path structures. The segments here
are defined as stretches of sequential residues forming
native contacts, with the additional constraint that each
segment is separated by at least b noninteracting residues.
This histogram clearly shows that a single or double-
sequence approximation, i.e., assuming one or two native-
like segments, is inadequate. In contrast, we verified that
modeling only the largest structured region is sufficient to
describe most of the transition-path ensemble. In Fig. 5 b,
atomistic simulations (see Piana et al. (34)). (a) For ~50% of the transition-

tructured region. (b) Histograms of the number of distinct structured regions

tion of the total transition-path time spent in each topological configuration.

ifetimes. The line s ¼ t is indicative of an exponential waiting-time distri-



FIGURE 6 Commitment probabilities for transient states in atomistic

simulations. The probability of being on a transition path given that an

excursion from the unfolded (bottom) or native (top) ensemble either rea-

ches or disrupts the indicated topological configuration, respectively.

Only excursions that achieve a minimum fraction of the total number of

contacts in a topological configuration, maxðEiÞ, are counted. No data is

available in the case of configuration abef for the stricter condition

EiR0:9 maxðEiÞ, because no qualifying events were observed in the avail-
able simulation trajectories. To see this figure in color, go online.

Protein-Folding Transition Paths
we plot the probability of finding one or more structured re-
gions, each containing a minimum number of residues Nc on
a transition path. If we ignore all native-like clusters con-
taining eight or fewer residues, then we find that the assump-
tion of a single structured region is valid for >95% of the
(un)folding trajectories.

Next, we calculated the lifetimes of the predicted tran-
sient states on the observed transition paths. As in our theo-
retical approach, we identified the topological configuration
in the simulation trajectories by determining which sub-
structures are at least partially formed within the largest
structured region. We then calculated the mean, t, and stan-
dard deviation, s, of the distribution of lifetimes for all visits
to each topological configuration. In Fig. 5 c, we plot the
fraction of the total transition-path time spent in each
configuration versus its mean lifetime. We find that the three
most populated configurations (abde, ab, and abdef) agree
with the predictions shown in Fig. 4 a. Meanwhile, the
average lifetimes of all visited transient states range from
20 to 300 ns, considerably longer than the timescale for
native-contact formation. Finally, Fig. 5 d shows that the co-
efficient of variation of the lifetimes, s/t, is close to unity
for most configurations. This is indicative of an exponential
distribution of waiting times, which supports our prediction
that the barrier-separated configurations constitute meta-
stable states.

Having verified our fundamental assumptions and the
most general predictions of our theory, we then assessed
the accuracy of our predictions regarding the rate-limiting
step of the folding reaction. We identified all excursions
away from the free-energy minima of the unfolded and
folded ensembles in the simulation trajectories and counted
the number of excursions that reached each topological
configuration starting from either the unfolded, U, or folded,
F, ensemble. Transitions were only counted if a minimum
fraction of the total number of contacts, maxðEiÞ, are formed
in configuration i. We then calculated the commitment prob-
ability for each configuration, i.e., the probability of being
on a transition path given that a specific topological config-
uration is reached, using the Bayesian formula

pðTP jU=F/iÞ ¼ nTP � pðU=F/i jTPÞ
nU=F/i

; (4)

where nTP is the number of folding or unfolding transition

paths, pðU=F/i jTPÞ is the probability of reaching config-
uration i on a folding or unfolding transition path, and
nU=F/i is the total number of excursions that reached
configuration i. The results of this analysis are presented
in Fig. 6.

As predicted, the probability of folding surpasses 50%
once configuration abde is reached from the unfolded
ensemble; with the stricter criterion EiR0:9 maxðEiÞ, this
probability increases to 100%. The necessary precursors to
this transition, including the assembly of substructures a,
b, and e, have considerably smaller commitment probabili-
ties. We also find that disrupting configuration abde in-
creases the probability of unfolding above 50% for
excursions starting from the folded ensemble. Despite the
limited statistics from the available simulation trajectories,
these results lend strong support to our predictive theory.
This agreement is crucial because it demonstrates that our
description in terms of transient states can provide mecha-
nistic insights into the rate-limiting events on the transition
paths of topologically complex proteins.
Comparison with kinetic measurements

Experimentally, the folding transition-state ensemble can be
probed indirectly by perturbing interactions between resi-
dues. The most commonly used techniques are f-value anal-
ysis (35), which compares changes in the rate of folding to
changes in the equilibrium constant due to single-residue
point mutations, and j-value analysis (36), which applies
an analogous strategy to pairwise contacts between sol-
vent-exposed residues. While f- and j-values do not test
our theory directly—for instance, they cannot distinguish
the rate-limiting contacts from prerequisite contacts at the
transition state, nor can they provide detailed information
on transition-path dynamics—they remain the only experi-
mental techniques for which consistent data exist for a large
number of proteins.

To compare our model with experimental measurements,
we calculate f- and j-values due to energetic perturbations
in the small-perturbation limit,
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juv ¼ Duv

�
lnk�1

fold

��ðDuvFnative=kBTÞ
��
e0uv�euv/0

; (5)

fu ¼
X

juv

�
du; (6)
v

where kfold is the folding rate calculated from transition-path

theory; Duv indicates the change due to a perturbation in the
contact energy euv/e0uv; and du is the number of contacts
made by residue u in the native state. In f-value compari-
sons, we consider only mutations to alanine or glycine; in
cases where data for both mutations are available, we
choose the substitution that is chemically most similar to
the wild-type residue at that position. We also leave
f-values that are negative or significantly greater than unity
out of the comparison (see the Supporting Material).

In Fig. 7, we show the agreement between the predicted
f- and j-values and three experimental measurements for
ubiquitin. Calculating the f-value predictions under
conditions of equal folded and unfolded populations (see
the Supporting Material), we obtain a correlation coefficient
R ¼ 0.43 and p-value p ¼ 0.063 with the unfolding data of
Went and Jackson (37). To get an idea of the variability in
our predictions due to changes in the native-state stability,
we also plot the predicted range of f-values due to stabiliz-
ing or destabilizing the native state by 2 kBT. This agreement
is reasonable considering that many mutations perturb the
energy of the transition state by several kBT. The correlation
between the predicted and experimental j-values is consid-
erably stronger, with R ¼ 0.80 and p ¼ 0.00061. There is
less ambiguity in the latter comparison, because the exper-
imental perturbations are intended to affect only a single
a

b

FIGURE 7 Comparison of f- and j-values for ubiquitin. (a) Comparison of

imental measurements: folding and unfolding, Went et al. (37), and Sosnick et

region indicates the range of predictions from DFnative ¼ 2kBT (upper limit) to

form native contacts. (b) Comparison with f-values calculated from atomistic sim

individual transition paths (see the SupportingMaterial). (c) Comparison of predi

color, go online.
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native contact and are reported in the small-perturbation
limit. We also compare our predictions with f-values calcu-
lated from the atomistic simulations following the transi-
tion-path ensemble method of Best and Hummer (38) and
the native-contact definition used in Figs. 5 and 6. Here
we find that the theory-simulation and simulation-experi-
ment correlations for f-values are similar (R ¼ 0.60,
p¼ 4.5� 10�8 and R¼ 0.51, p¼ 0.024, respectively); how-
ever, the agreement between simulation and experiment is
weaker for j-values (R ¼ 0.48, p ¼ 0.080). Notably, both
the theoretical predictions and the simulation results indi-
cate a more pronounced role for the C-terminus in the tran-
sition-state ensemble than is apparent from the experimental
f-values (Fig. 7, a and b).

To examine the generality of our predictions, we have
also calculated f- and j-values for comparison with exper-
iments on an additional 14 proteins. Overall, we find good
agreement, indicating that our native-centric model captures
the essential physics of folding across a wide variety of pro-
teins with 50 or more amino acids (Table 1). Detailed case
studies for protein G (Protein Data Bank (PDB): 1IGD), pro-
tein L (PDB: 1K53), chymotrypsin inhibitor 2 (PDB: 2CI2),
cold-shock protein (PDB: 1CSP), and an SH3 domain (PDB:
1SHG) are provided in the SupportingMaterial; complete de-
tails of allmutations tested are provided there aswell.Wefind
that the agreement between our predictions and experiments
is generally better for j-values than f-values and is worst for
small helix bundles, such as the engrailed homeodomain pro-
teins (PDB: 1ENH), which are known to have heterogeneous
folding pathways that are highly sensitive to the force field
used in computer simulations (38,39). In fact, the greatest
source of uncertainty in making these comparisons is the
c

predicted f-values in the small-perturbation limit with three sets of exper-

al. (52). Circles indicate predictions assuming DFnative ¼ 0; the light-blue

�2 kBT (lower limit). Predictions are not shown for residues that do not

ulations. The light-orange range reports an estimate of the variability across

cted and experimental j-values from Sosnick et al. (52). To see this figure in



TABLE 1 Comparison of Predicted and Experimental f- and

c-Values for a Diverse Set of Proteins

PDB entry number n R p

f-values

1ENH 11 0.14 0.69

1IGD 20 0.80 0.000023

1SHG 10 0.70 0.024

1K53 37 0.36 0.031

2CI2 32 0.42 0.018

1CSP 16 0.71 0.0041

1UBQ 19 0.43 0.063

1IMP 14 0.73 0.003

1TIU 22 0.48 0.024

1BTB 21 0.44 0.045

1FKB 21 0.65 0.0015

1RNB 12 0.60 0.038

3CHY 7 0.91 0.0044

2VIL 17 0.43 0.088

j-values

1IGD 8 0.69 0.059

1K53 7 0.93 0.022

1UBQ 14 0.80 0.00061

2ACY 8 0.71 0.048

For each protein, identified by its Protein Data Bank (PDB) entry, we list the

number of data points, n; the Pearson correlation coefficient, R; and the

associated p-value, p. Note that the PDB: 1IGD f-values were used in

the parameterization of the empirical two-parameter potential (see Mate-

rials and Methods). Complete details and accompanying figures are pro-

vided in the Supporting Material (see Tables S1–S3 and Figs. S7–S9).
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sensitivity of the predicted f- and j-values to the native-
contact energies, and, consequently, the relative stabilities
of the substructures. We caution that the calculated correla-
tion coefficients and p-values are affected by correlations
in the f- andj-values of neighboring residues and the choice
of mutations for experimental characterization. Neverthe-
less, these results indicate that the predictions of our theory
are compatible with the available experimental data on a
diverse set of proteins.
DISCUSSION

We have introduced a theory to predict the detailed kinetics
and intermediate states on protein-folding transition paths.
We have shown that the folding of topologically complex
proteins follows a predictable sequence of transitions be-
tween transient states, which can be identified directly
from the native structure. While our approach has been
developed using a discrete, native-centric model of globular
proteins, our conclusions are broadly applicable to the self-
assembly of polymers with specific interactions, such as
non-coding RNA (40) and DNA origami (41).
Physical explanation for the emergence of
‘‘foldons’’

Our analysis shows that there is a natural level of resolu-
tion for describing transition-path dynamics. Although all
macromolecular transition paths are heterogeneous when
examined in sufficient detail, modeling the assembly and
disassembly of discrete substructures fully captures the
long-timescale motions and metastable states on folding
pathways. In addition, this ability to predict transient states
on the basis of a protein’s native structure alleviates the need
for contiguous-sequence approximations that are not justi-
fied for proteins with complex native topologies.

Many lines of evidence, including hydrogen-exchange
(8), metal-binding kinetics at bi-histidine sites (42), and sin-
gle-molecule pulling experiments (15), support the exis-
tence of transient, high-free-energy folding intermediates
composed of cooperative units that are often referred to as
‘‘foldons’’ (9,43). In fact, sequential folding through a series
of intermediates was proposed in some of the earliest
models of protein-folding (44,45). Our theory predicts that
these transient states emerge directly from the topology of
the native state. We have further shown that the cooperativ-
ity among these groups of native contacts is a consequence
of the central role of loop formation in protein folding,
which gives rise to entropic barriers between transient
states. While these cooperative units are most easily identi-
fied in the context of a native-centric model, the appearance
of structurally defined metastable states in atomistic simula-
tions supports the generality of this finding.
Ordered pathways are determined by the
native-state structure

Although protein-folding is a stochastic process, the most
probable transition paths tend to follow a small number of
distinct pathways. Calculations for a structurally diverse
set of examples (see Figs. S2–S6) show that the dominant
folding pathways are highly predictable when analyzed at
the level of discrete substructures. However, the order in
which the substructures assemble is not determined by their
stabilities in isolation. Instead, the lowest-free-energy path
through the folding landscape depends on both the stabilities
of composite assemblies of multiple substructures and the
barriers between these intermediate states.

This description in terms of transient states provides a
detailed explanation for the origin of the folding free-energy
barrier. In the unfolded ensemble, the individual substruc-
tures tend to be unstable because the native contacts do
not completely compensate for the loss of configurational
entropy. The lowest-free-energy folding pathway requires
the assembly of a specific set of native-like loops in the
polymer backbone, which then allows for the formation of
stabilizing native contacts. In particular, long-distance con-
tacts (46,47) that connect the discrete substructures are most
likely to form during a transition between topological con-
figurations. Because the ensemble of transition paths passes
through a network of intermediates (48,49), a folding reac-
tion may be poorly described by a single order parameter.
In contrast to one-dimensional free-energy projections,
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coarse-graining on the basis of the topology of the polymer
backbone preserves the kinetic connectivity of the complete
folding landscape.
Mechanistic description of a folding reaction

Our theory provides a mechanistic description of protein-
folding transition paths by identifying the crucial event that
must occur for a protein to fold to its native state. The ability
to predict the contacts that are formed at each step along the
folding pathway is a key insight that is difficult to discern
from kinetic measurements alone. Whereas f- and j-values
can, in principle, report the set of contacts that are formed at
the transition state, our approach is able to distinguish which
contacts are responsible for commitment to the folded
ensemble. In fact, many of the residues that form such crucial
contacts, and are thus essential to the mechanism of folding,
are found to have low to moderate f-values. This is largely a
consequence of averaging over all native contacts involving
the residue of interest, only some of which may be formed
at the transition state. Core-facing residues that form a large
number of stabilizing contacts in the native state are particu-
larly likely to have lowf-values for this reason (50,51).Other
authors have noted that misleadingly low f-values from de-
stabilizing mutations can result from structural relaxation
in the transition state (52) or redirection of the transition-
path ensemble through parallel pathways (38).

It is important to note that our predictions and the agree-
ment with kinetic measurements are affected by the
native-contact energies. While the two-parameter empirical
potential that we have used here is insufficient to capture all
aspects of the interatomic interactions, we nevertheless
achieve similar or greater accuracy in f- and j-value predic-
tions to that of atomistic simulations (see, e.g., Best and
Hummer (38)). This aspect of our theoretical predictions
could be improved by increasing the complexity of the
empirical potential and tuning the parameters by compari-
son with detailed simulation data. Nevertheless, we expect
that the general features of the predicted transition paths,
including the metastability of structurally defined transient
states, will remain unchanged.
CONCLUSIONS

In summary, we have developed an approach to predict pro-
tein-folding transition paths and high-free-energy interme-
diate states using a discrete native-centric model. Our
theory yields detailed, mechanistic insights into protein
folding without the use of computationally expensive simu-
lations. Fundamentally, this advance relies on the physically
realistic restrictions placed on the polymer configurations in
our model, a crucial aspect that differs significantly from
earlier efforts (19–21).

Beyond proteins, our theory can be applied more gener-
ally to polymers with specific interactions, such as noncod-
934 Biophysical Journal 111, 925–936, September 6, 2016
ing RNA and DNA origami, where the ability to distinguish
among kinetically separated pathways is essential for
describing complex folding reactions. The model that we
have presented here is transferable to a variety of such sys-
tems due to the similar underlying physics of self-assem-
bling structures that are built around polymer backbones
and stabilized by native contacts. We anticipate that this
work will open up new avenues for addressing poorly under-
stood aspects of protein-folding kinetics, including the
molecular mechanisms of cotranslational and chaperone-
assisted folding.
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SUPPLEMENTARY INFORMATION FOR “STRUCTURE-BASED PREDICTION OF
PROTEIN-FOLDING TRANSITION PATHS”

S1. CONTACT-GRAPH MODEL

A. Allowed microstates

In this section, we describe the allowed microstates of
the contact-graph model using the language of graph the-
ory. The microstate that corresponds to the completely
folded polymer, i.e., the configuration in which all possi-
ble contacts are formed, is denoted by the graph G. The
vertices of this graph correspond to residues, while the
edges indicate native contacts. The vertices {u} are la-
beled by their positions on the polymer backbone, i.e.,
u ∈ {1, . . . , L}, where L is the total number of residues
in the chain. We denote the set of all allowed subgraphs
by {g} and the set of edges in a microstate g by E(g).
Because g is a subgraph of G, every edge in E(g) is also
an edge in E(G). Only residues that form one or more
contacts are represented by vertices in g; this set of ver-
tices is denoted by the set V(g). The set of connected
components of g is C(g), and the edge and vertex sets of
a connected component c ∈ C(g) are E(g, c) and V(g, c),
respectively.

For each microstate, the associated graph of native
contacts can be decomposed into a disjoint set of con-
nected components (maximal subgraphs in which all
pairs of vertices are connected by paths through the sub-
graph). As described in the main text, the fact that the
residues occupy non-overlapping finite volumes implies
that many contacts must be correlated. These correla-
tions place restrictions on the combinations of contacts
that can be simultaneously formed. In the generation of
a contact-graph model from a crystal structure, we have
ignored contacts between residues that are separated by
less than one Kuhn segment, b, in the polymer sequence;
for consistency, we must therefore consider contacts in-
volving sequences of residues that are shorter than one
Kuhn segment to be correlated as well. Consequently, we
restrict the set of allowed microstates to those subgraphs
that satisfy the following two rules:

1. Every connected component, c ∈ C(g), must be an
induced subgraph of G. This means that every edge
(u, v) in the connected component c must appear in
the subgraph g if the vertices u and v are adjacent
in the supergraph G.

2. Assume that two vertices v′> u′ belong to the same
connected component c and are separated by at
most b residues in the sequence, i.e., v′− u′≤ b.
Then every intervening vertex u, i.e., u′< u < v′,
must also be included in the connected component
c if an edge exists between u and any vertex v in c.

B. Loop entropy

In Eq. (2), we define a loop to be any contiguous se-
quence of non-interacting residues, with the exception of
‘bridge’ segments (residues that, if removed, would break
a polymer configuration given by a specific microstate
into two non-interacting pieces). For example, the mi-
crostate shown on the right in Figure 1c contains two
loops, 4–5–6–7 and 18, and one bridge segment, 11–12–
13, where the residues are labeled starting from 1 at the
top right of the figure. In Eq. (2), r(l) is the end-to-end
distance of loop l, expressed as a dimensionless multi-
ple of the covalent backbone bond length; r = 0 if the
residues at the loop ends form a native contact.

C. Native-contact energies

It is important to note that the native-contact ener-
gies are themselves free energies, since they depend on
the average potential energy between two amino acids as
well as solvent effects. Here we assume that these at-
tractive interactions are short-ranged and discrete, i.e., a
contact is either completely formed or not present. In a
real polymer, there are likely to be other random inter-
actions between residues. Such nonspecific interactions
contribute to the average energy of the ensemble of ran-
dom coil configurations, which is taken to be the reference
state for all free-energy calculations. Consequently, the
attractive interactions that are associated with specific
contacts are, more precisely, associated with the differ-

ences between the specific contact free energies and the
average interaction energy between any pair of residues
in the chain. We assume that only these free-energy dif-
ferences determine the folding pathways of the polymer.
The two-parameter empirical potential introduced in

the Materials and Methods was manually tuned to
achieve good agreement with the experimental φ-values
for protein G (1igd). We verified that our values for
the two adjustable parameters, αhelix and αhb, also re-
sult in close to optimal agreement with the experimental
φ-values for the α/β proteins 1k53, 1ubq and 2ci2.

S2. MONTE CARLO FREE-ENERGY
CALCULATIONS

We compute free energies in this model using Monte
Carlo integration. This application of the Monte Carlo
method is not a conventional simulation, as the sequence
of microstates generated by our algorithm does not cor-
respond to a physical folding trajectory. Instead, the ap-
proach used here is simply an efficient means to integrate
over the set of microstates with the same topological con-
figuration. (For a related application of this Monte Carlo
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technique, see Ref. 3.) To do so, we first construct a
Markov Chain to sample from the space of allowed sub-
graphs {g}. We then use the Wang–Landau method (8)
to calculate Fi, the free energy of all microstates in topo-
logical configuration i. Finally, we compute the contact
and vertex probabilities 〈1uv〉i and 〈1u〉i. Below, we first
describe the construction of the Markov Chain and then
provide details of these algorithms.

A. Monte Carlo acceptance probabilities

In order to calculate equilibrium properties of the
contact-graph model, the underlying Markov Chain must
obey detailed balance. That is, the probability of mak-
ing forward and reverse moves between two subgraphs
g and g′ must be equal. To do so, we propose tran-
sitions between microstates (which obey the two rules
given in Sec. S1A) with uniform probability and then
correct for this bias by calculating the ratio of the gener-
ation probabilities between forward and backward moves,
α(g → g′)/α(g′ → g).
Assuming a single connected component (i.e., a single

structured region) c, we implement moves that add or
remove individual vertices. The set of vertices that are
adjacent to c in the supergraph G but are not in V(g) is
denoted by A(g, c). We choose one vertex u from A(g, c)
with uniform probability and form all edges (u, v) ∈ E(G)
between u and the existing vertices v ∈ V(g, c). With the
addition of these edges, we denote the new graph as g′

and the updated connected component as c′.
For the reverse move, we must avoid breaking c′ into

two or more disconnected subgraphs. Consequently, we
must be careful not to remove any vertex that is an ar-
ticulation point of c′. The set of such points is denoted
by B(g′, c′). We therefore select one vertex with uniform
probability from the set V(g′, c′) \ B(g′, c′). For this move,
we only consider connected components that are larger
than a dyad. The ratio of the forward to reverse genera-
tion probabilities is

αN+(g, c→ g′, c′)

αN−(g′, c′ → g, c)
=

|A(g, c)|

1
[

|V(g′, c′)| > 2
]

|V(g′, c′) \ B(g′, c′)|
.

(S1)
To ensure ergodicity and to improve sampling effi-

ciency, we implement a super-detailed balance sampling
scheme (9) for vertex additions and removals. If a move
g, c→ g′, c′ results in a subgraph that violates rule 2 in
Sec. S1A, we immediately attempt another move of the
same type, starting from the new subgraph g′ using the
updated connected component c′. This process is re-
peated until the resulting subgraph, g(n), satisfies rule 2.
The total probability of following this path from g to g(n)

is the product of the generation probabilities at each step,
α(g → g(1))× α(g(1) → g(2))× · · · × α(g(n−1) → g(n)).
The ratio of generation probabilities depends on the
total probability of following this forward path and
the total probability of traversing the path in reverse,

following precisely the same sequence of steps:

α
(n)
N+

α
(n)
N−

=

∏n
i=1 αN+(g

(i−1), c(i−1) → g(i), c(i))
∏n−1

i=0 αN−(g(n−i), c(n−i) → g(n−i−1), c(n−i−1))
,

(S2)
where each step is indexed by i and g(0) ≡ g. If at any
step on the forward move we find that |A(g(i), c(i))| = 0,
then the entire move is rejected. In order to obey detailed
balance, vertex additions and removals are attempted
with equal probability at every Monte Carlo step.

B. Wang–Landau sampling

Wang–Landau sampling (8) provides an efficient algo-
rithm for calculating the free-energy difference between
two disjoint sets of microstates. Here we implement the
variant of this algorithm described in Ref. 10. In essence,
the Wang–Landau algorithm calculates an equilibrium
free-energy landscape stochastically by continually up-
dating an estimate of the free energy, Ft, as the Monte
Carlo calculation samples from the space of allowed sub-
graphs. At every step, the underlying Monte Carlo al-
gorithm uses Ft to bias the acceptance probabilities of
individual moves.
For these calculations, we use an order parameter

to measure progress toward the completely folded mi-
crostate. Excluding the effects of the backbone connec-
tivity, which are entirely contained in ∆Sl(g), the en-
tropic contribution to the free energy in Eq. (1) is pro-
portional to

X(g) ≡
∑

c∈C(g)

[

|V(g, c)| − 1
]

= N(g)− C(g), (S3)

where N(g) is the total number of interacting residues
and C(g) ≡ |C(g)| is the number of connected compo-
nents of the microstate g. Like the commonly used frac-
tion of native contacts, Q (1), the order parameter X
characterizes the similarity between any given microstate
and the native configuration. However, X is preferable
for analyzing a discrete model, since it measures the de-
gree of assembly of the independent monomers as op-
posed to the (likely correlated) interactions among them.
Since our calculations only consider the largest struc-
tured region, C(g) = 1 for all topological configurations
except ∅, in which case C(g) = 0.
To perform free-energy calculations for a specific topo-

logical configuration i, we first find the subgraph of G
that contains the maximum number of compatible con-
tacts. (We find the maximal subgraph containing all pos-
sible edges from all substructures in topological configu-
ration i, without including edges from substructures that
are not represented in configuration i.) The free energy
of this microstate serves as the reference state for the
Wang–Landau calculation, F [i,maxi(X)]. We then ap-
ply the algorithm described in Ref. 10 using the following
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acceptance probabilities for proposed moves g → g′:

pacc(g→g′) = min

{

1,
α(g′→g)

α(g→g′)
e−

[

F (g′)−F (g)
]

/kBT (S4)

× e

[

Ft

[

i,X(g′)
]

−Ft

[

i,X(g)
]

]

/kBT

}

.

The Wang–Landau algorithm breaks detailed balance,
since the bias changes as a function of the Monte Carlo
‘time,’ t. However, the amount by which Ft(i,X) is
updated between Monte Carlo moves is gradually de-
creased as the algorithm runs such that the estimated
Ft(i,X) converges to the equilibrium free-energy land-
scape. The total free energy of each topological con-
figuration is then Fi = −kBT ln

∑

X exp[−Ft(i,X)/kBT ].
For proteins with ∼ 60 residues, sufficiently converged
results for all topological configurations can typically be
obtained in a few minutes on a single processor.

C. Calculation of ensemble averages

Once the Wang–Landau sampling is complete, we use
Ft(i,X) as a biasing potential to accelerate the calcu-
lation of equilibrium averages via standard Metropolis
Monte Carlo sampling. If the free-energy differences
between adjacent coarse-grained states have converged
to within ∼1 kBT , then biased Metropolis Monte Carlo
sampling will visit all coarse-grained states with roughly
equal frequency. This means that the Metropolis algo-
rithm can provide a direct verification of the convergence
of the Wang–Landau sampling.
We use Metropolis Monte Carlo sampling to compute

the equilibrium contact probability, 〈1uv〉, and vertex
probability, 〈1u〉, within each topological configuration i.
We calculate the probability that the contact (u, v) or the
vertex u appears in the set of visited microstates,

〈1uv〉i ≃

∑

X

∑

{y}X
1uv(gy) e

−F (i,X)/kBT

∑

X

∑

{y}X
e−F (i,X)/kBT

, (S5)

〈1u〉i ≃

∑

X

∑

{y}X
1u(gy) e

−F (i,X)/kBT

∑

X

∑

{y}X
e−F (i,X)/kBT

, (S6)

where 1uv(g) and 1u(g) indicate the presence of edge
(u, v) and vertex u, respectively, in microstate g, and
{y}X is the set of all visited microstates with order pa-
rameter X. The use of a biasing potential allows the
Markov chain to explore the entire free-energy landscape
rapidly without getting stuck for long intervals in lo-
cal free-energy minima. The fact that the underlying
Markov chain obeys detailed balance ensures that the
ensemble average within each coarse-grained state (i,X)
converges to its equilibrium value given a sufficient num-
ber of Monte Carlo steps, nMC. Typically, we choose
nMC ≃ 1000 per coarse-grained state (i,X).

a

i

u

j

s

b

i

j
s

FIG. S1. Schematic of mean-field barrier calculations.
(a) In the first mechanism, a single vertex u is added to the
existing structured region i to form a new loop in the poly-
mer backbone. (b) In the second mechanism, a pre-assembled
substructure s makes contact with the existing structured re-
gion i; in this case, substructure s has no residues in common
with configuration i. In both cases, after the formation of this
initial contact, the polymer is in topological configuration j.
See text for details.

S3. MEAN-FIELD BARRIER CALCULATIONS

To compute the free-energy barrier between a pair of
topological configurations i and j, we assume that the
initial configuration i is in local equilibrium. Making a
contact between the existing structure in configuration i
and the new substructure s, which is part of configura-
tion j, necessarily requires the formation of a new loop in
the polymer backbone; after this initial contact, folding
can proceed in topological configuration j by making fur-
ther native contacts at a much smaller entropic cost per
contact. The barrier calculation should therefore account
for all the ways in which this initial contact between the
structured region of configuration i and the new substruc-
ture s can be made. This calculation is carried out in a
mean-field approximation, where the effective strength
of an interaction between a residue from the new sub-
structure s and a residue v in the existing structured re-
gion depends on the local equilibrium in configuration i,
〈1v〉i; this approximation is described below. Fluctu-
ations within configuration i are taken into account by
Boltzmann-averaging this barrier calculation over all val-
ues of the order parameter X in this configuration.

The addition of a new substructure to the existing
structured region in configuration i can occur by one of
two mechanisms, depending on the way the substructures
interact in topological configuration j. The first mecha-
nism applies in cases where the contacts associated with
the new substructure s directly involve residues that are
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already present in topological configuration i. As a re-
sult, the first step in the assembly of the new substructure
involves the addition of a residue u that participates in
substructure s but is not part of the existing structured
region i (see Figure S1a). Assuming that the value of
the order parameter for the existing structure is X, the
mean-field free energy of this configuration depends on
the loss of conformation entropy due to bringing a residue
u into contact with structured region in configuration i,
〈∆Su〉i,X , as well as the mean-field energies of all native
contacts between u and residues in region i,

∆F †
i,X→j

kBT
= − ln

∑

u

exp

〈

∆Su

kB

〉

i,X

(S7)

×







exp



−
∑

v∈V(i)

(

ǫuv
kBT

)

〈1v〉i,X



− 1







,

where V(i) indicates the set of residues that contribute
to configuration i. The first sum in Eq. (S7) runs over
all residues {u} that participate in one of the contacts
comprising substructure s and are not in the set V(i).

The second mechanism applies in cases where the new
and existing substructures do not have any residues in
common (see Figure S1b). Instead, these substructures
interact in the native state via edges that are not part
of any substructure (i.e., gray edges in Figure S1b). To
calculate the barrier in this case, we assume that both the
initial configuration i and the new substructure s are in
local equilibrium. In the mean-field approximation, the
free energy of all microstates in which the substructure s
makes contact with the locally equilibrated structured
region in configuration i, assuming that the value of the
order parameter for the existing structure is X, is

∆F †
i,X→j

kBT
= Fs −

〈

∆Ss

kB

〉

i,X

(S8)

− ln















exp









−
∑

u∈V(s)
v∈V(i)

〈1u〉s

(

ǫuv
kBT

)

〈1v〉i,X









− 1















,

where Fs is the free energy of the isolated substructure s
and 〈∆Ss〉i,X is the entropic penalty due to bringing s
into contact with the structured region in configuration i.
We compute the apparent barrier between configura-

tions i and j by summing over all values of the order
parameter X,

∆F †
i→j

kBT
=− ln

∑

X

exp

[

−∆F †
i,X→j − (Fi,X − Fi)

kBT

]

. (S9)

The term (Fi,X − Fi) accounts for the free-energy differ-
ence between microstates at a specific value of the order
parameter and the total free energy of topological con-
figuration i, Fi. To obey detailed balance, the barrier for

the reverse transition is ∆F †
j→i = ∆F †

i→j − (Fj − Fi).

S4. TRANSITION-PATH THEORY

Given the continuous-time Markov chain specified by
the rate matrix in Eq. (3), we can use transition-path the-
ory (4) to calculate properties of the ensemble of folding
trajectories. The stationary distribution of the Markov
chain, π(i,X), is equivalent to the Boltzmann distribu-
tion, πi = exp(−Fi/kBT )/

∑

j exp(−Fi/kBT ). All fold-
ing transition paths originate in the unfolded configura-
tion, A = ∅, and terminate in the configuration with the
maximum number of substructures, B. Here we repro-
duce a number of equations from Ref. 4 for completeness.
First, we calculate pfold(i), the equilibrium probability

that a dynamical trajectory will reach configuration B,
starting from configuration i, before returning to config-
uration A. By definition, pfold is equal to zero and one
in configurations A and B, respectively. Using the rate
matrix kij , pfold is computed for all intermediate config-
urations by solving the linear system

∑

j

kijpfold(j) = 0 ∀i ∈ (A ∪B)c, (S10)

where (A ∪B)c indicates all configurations that are nei-
ther A nor B. The reactive flux through every transition
i→ j is

f(i→ j) =

{

πi
[

1− pfold(i)
]

kijpfold(j) if i 6= j,

0 if i = j.
(S11)

The net reactive flux through the transition i→ j is
f+ij ≡ max(fij − fji, 0). From this calculation, we can
determine the overall folding rate,

kfold =

∑

j 6=A f
+
Aj

πA
. (S12)

In the two-state approximation, the apparent free-
energy barrier between configurations A and B is

∆F †
AB = − ln (2kfold). Lastly, the fraction of time spent

in configuration i in the transition-path ensemble is

pAB(i) = πipfold(i)[1− pfold(i)]. (S13)

S5. THEORETICAL φ AND ψ-VALUE
CALCULATIONS

Theoretical φ and ψ-values are calculated as described
in Eqs. (5) and (6). For the rate calculation, kfold,
the unfolded, A, and folded, B, configurations are cho-
sen as described in Sec. S4. The inverse temperature
(kBT )

−1 is chosen to equate the free-energies of the folded
ensemble, which includes contributions from all native
contacts, and the unfolded ensemble; we take the un-
folded ensemble to include both the random coil configu-
ration, ∅, and all individual substructures in isolation,
Funfolded = −kBT ln [1 +

∑

s exp(−Fs/kBT )], where the
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index s runs over all substructures. (Exceptions are made
for proteins 1rnb and 2vil, where, due to the stability
of partially folded intermediate configurations, the free-
energy differences between the native and unfolded en-
sembles are set to −2.5 and −1 kBT , respectively. These
choices ensure that the native states are globally stable.)

The mutations considered in our comparisons with ex-
perimental measurements are listed in Tables S1–S3 and
shown in Figures S7–S9. Unless otherwise noted, we as-
sume that the experimental errors on φ and ψ-values are
±0.1. We leave φ-values that are less than−0.1 or greater
than 1.1 out of comparisons with the theoretical predic-
tions. (φ-values in the range [−0.1 : 0] or [1 : 1.1] are set
to 0 or 1, respectively.) For ψ-value comparisons, we set
values greater than 1 to unity.

S6. ANALYSIS OF ATOMISTIC MOLECULAR
DYNAMICS SIMULATIONS

For the analysis of atomistic simulation data, we adopt
a history-dependent native-contact definition (2): a con-
tact is formed when heavy atoms from two residues pass
within 3.5 Å of one another and broken when all heavy
atoms of the same residues move farther than 5.5 Å apart.
To reduce the contribution of transient fluctuations fur-
ther, we disregarded contacts lasting less than 5 ns;
changing this threshold by ±5 ns does not meaningfully
affect the results of the subsequent calculations. Native
contacts were defined on the basis of the crystal struc-
ture as described in the Materials and Methods for direct
comparison with the theoretical results. We determined
the largest structured region at every 1-ns time step by
decomposing the graph of native contacts into connected
components. We then calculated a one-dimensional free-
energy landscape as a function of the number of native
contacts using all time steps from the available trajec-
tories. Folding transition paths are defined as the por-

tions of the trajectories that transit from the free-energy
minimum of the unfolded ensemble on this landscape to
the free-energy minimum of the folded ensemble without
returning to the free-energy minimum of the unfolded
ensemble. Unfolding transition paths are defined anal-
ogously, starting from the free-energy minimum of the
folded ensemble.
For the configuration lifetime calculations shown in

Figure 5, we identified all substructures with at least 6
contacts present in the largest structured region. We
verified that every such substructure is completely con-
tained within the largest structured region, i.e., no con-
tacts from a substructure that forms part of the largest
structured region are found outside of this region, in more
than 99.8% of all time steps. For the commitment calcu-
lations shown in Figure 6, we used the stricter criterion
for substructure formation described in the Results.
We calculated φ-values from the simulated transition

paths using the method described in Ref. 7,

ψsimulation
uv ≃ p(1uv|TP), (S14)

φsimulation
u =

∑

v

ψsimulation
uv /du, (S15)

where p(1uv|TP) is the probability of observing a na-
tive contact between residues u and v at any time step
in the transition-path ensemble and du is the number
of native contacts formed by residue u. We estimated
the variability in the predicted φ and ψ-values across the
observed transition paths by performing bootstrapping
simulations in which the 10 observed transition paths
were sampled with replacement; the standard deviation
of φsimulation

u estimated in this way is shown in Figure 7b.
The calculations shown in Figure 7b are slightly differ-
ent from the results presented in Ref. 7 because our def-
initions of native contacts are not identical. Because
φsimulation
u is calculated directly from ψsimulation

uv , we ob-
tain the same correlation coefficient with the theoretical
predictions for both sets of values.
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FIG. S2. Predicted folding landscape for protein G (1igd) and comparison with experimental φ-values (11). The
configuration abcd is the native ensemble in this case, because all residues contribute the one of the four substructures. The
free-energy landscape and folding network are drawn as in Figures 3c and 4a, respectively.
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φ-values (13). The free-energy landscape and folding network are drawn as in Figures 3c and 4a, respectively.
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1enh φexpt φpred

F8A 0.42±0.1 0.15

L13A 0.51±0.1 0.31

A14G 0.79±0.1 0.39

F20A 0.36±0.1 0.24

Y25G 0.28±0.1 0.22

L26A 0.46±0.1 0.51

L38A 0.48±0.1 0.37

G39A 0.92±0.1 0.34

L40A 0.95±0.1 0.13

A43G 1.00±0.1 0.47

A54G 0.62±0.1 0.80

1igd φexpt φpred

I6A 0.38±0.1 0.44

L7A 0.32±0.1 0.20

T16A 0.00±0.1 0.15

A20G 0.02±0.1 0.08

D22A 0.23±0.1 0.16

A26G 0.31±0.1 0.23

V29A 0.26±0.1 0.34

K31G 0.23±0.1 0.32

Q32G 0.55±0.1 0.35

Y33A 0.20±0.1 0.24

A34G 0.21±0.1 0.26

N35G 0.19±0.1 0.31

V39A 0.16±0.1 0.12

G41A 0.00±0.1 0.27

D46A 0.96±0.1 0.65

D47A 0.67±0.1 0.69

T49A 0.84±0.1 0.66

T51A 0.44±0.1 0.61

T53A 0.27±0.1 0.54

V54A 0.16±0.1 0.39

1shg φexpt φpred

A11G 0.00±0.1 0.08

V23A 0.32±0.1 0.28

T24A 0.29±0.1 0.08

D29A 0.22±0.1 0.08

K43A 0.26±0.1 0.43

V44A 0.48±0.1 0.38

F52A 0.58±0.1 0.78

V53A 0.61±0.1 0.59

A55G 0.53±0.1 0.11

V58A 0.16±0.1 0.03

1k53 φexpt φpred

V4A 0.51±0.1 0.30

T5A 0.26±0.1 0.41

I6A 0.37±0.1 0.41

K7A 0.62±0.1 0.65

A8G 0.53±0.1 0.56

N9A 0.12±0.1 0.63

L10A 0.43±0.1 0.43

I11A 0.72±0.1 0.54

F12A 0.20±0.1 0.38

T17A 0.40±0.1 0.55

T19A 0.21±0.1 0.58

A20G 0.35±0.1 0.56

E21A 0.75±0.1 0.47

F22A 0.41±0.1 0.31

K23A 0.47±0.1 0.35

T25A 0.43±0.1 0.23

F26G 0.26±0.1 0.20

A29G 0.23±0.1 0.25

T30A 0.08±0.1 0.27

S31G 0.11±0.1 0.32

E32G 0.11±0.1 0.32

A33G 0.25±0.1 0.30

Y34A 0.05±0.1 0.26

A35G 0.28±0.1 0.32

Y36A 0.27±0.1 0.25

A37G 0.11±0.1 0.22

L40A 0.13±0.1 0.10

N44A 0.07±0.1 0.05

T48A 0.26±0.1 0.37

V49A 0.32±0.1 0.32

V51A 0.19±0.1 0.44

Y56A 0.15±0.1 0.46

T57A 0.13±0.1 0.57

L58A 0.27±0.1 0.50

N59A 0.17±0.1 0.47

I60A 0.17±0.1 0.49

K61A 0.16±0.1 0.38

2ci2 φexpt φpred

T3G 0.05±0.1 0.00

P6A 0.07±0.1 0.04

E7A 0.40±0.1 0.05

L8A 0.15±0.1 0.13

S12G 0.29±0.1 0.69

K17G 0.38±0.1 0.74

K18G 0.70±0.1 0.86

L21A 0.25±0.1 0.57

Q22G 0.12±0.1 0.85

K24G 0.10±0.1 0.32

P25A 0.20±0.1 0.38

E26A 0.42±0.1 0.24

I29A 0.25±0.1 0.29

I30G 0.26±0.1 0.30

L32A 0.19±0.1 0.43

V34G 0.16±0.1 0.10

V38A 0.12±0.1 0.00

T39A 0.19±0.1 0.00

E41A 0.32±0.1 0.00

Y42G 0.07±0.1 0.00

R43A 0.09±0.1 0.00

V47A 0.21±0.1 0.24

L49A 0.53±0.1 0.26

F50A 0.30±0.1 0.39

V51A 0.25±0.1 0.56

D52A 0.12±0.1 0.59

N56A 0.09±0.1 0.62

I57A 0.08±0.1 0.45

A58G 0.11±0.1 0.13

V60G 0.04±0.1 0.00

P61A 0.02±0.1 0.00

V63G 0.03±0.1 0.00

1csp φexpt φpred

L2A 0.20±0.2 0.43

K5A 0.54±0.24 0.84

K7A 0.91±0.1 0.88

N10A 0.45±0.34 0.91

K13A 0.73±0.11 0.90

F15A 0.53±0.1 0.95

F17A 0.12±0.1 0.94

E19A 0.15±0.35 0.84

D25A 0.48±0.1 0.95

I33A 0.01±0.1 0.00

L41A 0.31±0.1 0.18

Q45A 0.23±0.1 0.58

F49A 0.34±0.1 0.44

I51A 0.13±0.1 0.26

A60G 0.15±0.1 0.19

V63A 0.09±0.1 0.10

1ubq φexpt φpred

I3A 0.30±0.1 0.78

V5A 0.50±0.1 0.86

T7A 0.80±0.1 0.85

I13A 0.50±0.1 0.71

L15A 0.50±0.1 0.69

V17A 0.50±0.1 0.40

T22A 0.50±0.1 0.27

I23A 0.40±0.1 0.24

V26A 0.30±0.1 0.51

L27A 0.10±0.1 0.54

A28G 1.00±0.1 0.66

I30A 0.50±0.1 0.60

Q41A 0.00±0.1 0.57

L43A 0.30±0.1 0.50

L50A 0.00±0.1 0.06

L56A 0.10±0.1 0.05

I61A 0.00±0.1 0.08

L67A 0.00±0.1 0.79

L69A 0.30±0.1 0.73

1imp φexpt φpred

A13G 0.98±0.1 0.83

F15A 0.57±0.1 0.58

L16A 0.52±0.1 0.57

L18A 0.40±0.1 0.55

V19A 0.32±0.1 0.39

L33A 0.27±0.1 0.33

L36A 0.25±0.1 0.37

V37A 0.15±0.1 0.24

L52A 0.03±0.1 0.00

V68A 0.23±0.1 0.10

V71A 0.36±0.1 0.07

A76G 0.37±0.2 0.05

A77G 0.37±0.1 0.05

F83A 0.31±0.1 0.52

1tiu φexpt φpred

I2A 0.45±0.1 0.00

V4A 0.29±0.1 0.00

L8A 0.28±0.1 0.03

V13A 0.00±0.1 0.01

V15A 0.01±0.1 0.01

A19G 0.38±0.1 0.25

I23A 0.82±0.1 0.15

L25A 0.42±0.1 0.00

TABLE S1. List of φ-value mutations. Data points are from the following references, modified as described in Sec. S5:
1enh (16), 1igd (11), 1shg (14), 1k53 (12), 2ci2 (13), 1csp (15), 1ubq (6) refolding, 1imp (17) and 1tiu (18).
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V30A 0.45±0.1 0.00

G32A 0.51±0.1 0.74

L36A 0.50±0.1 0.53

L41A 0.40±0.1 0.00

C47A 0.42±0.1 0.48

H56A 0.52±0.1 0.51

L58A 0.79±0.1 0.65

L60A 0.67±0.1 0.16

C63A 0.23±0.1 0.04

M67A 0.13±0.1 0.11

V71A 0.63±0.1 0.68

A82G 0.16±0.1 0.30

L84A 0.05±0.1 0.31

V86A 0.01±0.1 0.02

1btb φexpt φpred

Q9G 0.72±0.2 0.04

I13A 0.45±0.2 0.06

Q18G 0.69±0.2 0.09

A25G 0.68±0.2 0.04

A36G 0.70±0.2 0.42

L37A 0.59±0.2 0.60

L41A 0.45±0.2 0.58

V45A 0.47±0.2 0.21

L49A 0.47±0.2 0.58

V50G 0.77±0.2 0.39

F56A 0.35±0.2 0.13

Q58G 0.11±0.2 0.08

Q61G 0.09±0.2 0.08

T63A 0.38±0.2 0.05

A67G 0.30±0.2 0.29

E68A 0.52±0.2 0.52

V70A 0.41±0.2 0.47

Q72G 0.81±0.2 0.85

A77G 0.90±0.2 0.73

A79G 0.63±0.2 0.81

T85A 0.51±0.2 0.64

1fkb φexpt φpred

V2A 0.39±0.1 0.39

V4A 0.27±0.1 0.40

T21A 0.40±0.1 0.45

V23A 0.52±0.1 0.47

V24A 0.38±0.1 0.45

T27A 0.28±0.1 0.41

F36A 0.15±0.1 0.29

L50A 0.39±0.1 0.33

V55A 0.08±0.1 0.32

I56A 0.19±0.1 0.34

R57G 0.14±0.1 0.37

E60G 0.13±0.1 0.26

E61G 0.20±0.1 0.36

V63A 0.51±0.1 0.36

T75A 0.24±0.1 0.41

I76A 0.34±0.1 0.40

I91A 0.04±0.1 0.00

L97A 0.23±0.1 0.40

V98A 0.27±0.1 0.44

V101A 0.57±0.1 0.44

L106A 0.35±0.1 0.42

1rnb φexpt φpred

N5A 0.09±0.1 0.13

T6G 0.21±0.1 0.38

V10A 0.33±0.1 0.35

L14A 0.59±0.1 0.37

T26G 0.00±0.1 0.07

V36A 0.00±0.1 0.00

N58A 0.94±0.1 0.00

N77A 0.00±0.1 0.11

N84A 0.16±0.1 0.00

S91A 0.93±0.1 0.53

S92A 0.95±0.1 0.52

3chy φexpt φpred

A36G 0.75±0.1 0.66

D38G 0.60±0.1 0.33

A42G 0.68±0.1 0.62

D64A 0.11±0.1 0.28

A97G 0.00±0.1 0.09

A98G 0.03±0.1 0.07

T112G 0.12±0.1 0.04

2vil φexpt φpred

L3A 0.35±0.1 0.00

V7A 0.45±0.1 0.00

I18A 0.49±0.1 0.44

I23A 0.65±0.1 0.62

M28A 0.58±0.1 0.65

C44A 0.85±0.1 0.64

V46A 0.69±0.1 0.66

L47A 0.43±0.1 0.58

L48A 0.62±0.1 0.67

I61A 0.05±0.1 0.71

L65A 0.24±0.1 0.61

E73A 0.69±0.1 0.56

A77G 0.52±0.1 0.57

A78G 0.56±0.1 0.58

T81A 0.75±0.1 0.57

M84A 0.68±0.1 0.57

L114A 0.03±0.1 0.01

TABLE S2. List of φ-value mutations (continued). Data points are from the following references, modified as described
in Sec. S5: 1btb (19), 1fkb (20), 1rnb (21), 3chy (22) and 2vil (23).

1igd ψexpt ψpred

K4–T51 0.17±0.1 0.55

I6–T53 0.71±0.1 0.51

N8–T55 0.30±0.1 0.26

T16–Y33 0.24±0.1 0.08

K28–Q32 0.24±0.1 0.35

Q32–D36 0.03±0.1 0.33

T44–T53 0.93±0.1 0.61

D46–T51 0.90±0.1 0.66

1k53 ψexpt ψpred

N9–T19 0.75±0.2 0.57

N9–N59 1.00±0.4 0.68

I11–K61 1.00±0.1 0.57

K28–E32 0.26±0.1 0.31

A35–T39 0.00±0.1 0.25

D50–N59 1.00±0.1 0.43

A52–T57 1.00±0.1 0.50

1ubq ψexpt ψpred

Q2–E16 0.53±0.1 0.66

Q2–E64 0.03±0.1 0.59

F4–T12 1.00±0.1 0.90

F4–T66 0.75±0.1 0.90

K6–T12 1.00±0.1 0.89

K6–T66 1.00±0.1 0.88

K6–H68 0.52±0.1 0.89

E24–A28 0.48±0.1 0.64

A28–D32 0.90±0.1 0.66

R42–Q49 0.07±0.1 0.40

R42–H68 0.26±0.1 0.72

R42–V70 0.57±0.1 0.67

F44–Q49 0.02±0.1 0.40

I44–V70 1.00±0.1 0.81

2acy ψexpt ψpred

D10–N81 0.70±0.1 0.22

E12–N79 1.00±0.1 0.23

K24–A28 0.01±0.1 0.08

A28–K32 0.00±0.1 0.08

W38–Q50 1.00±0.1 0.80

Q40–V97 0.13±0.1 0.07

S56–H60 0.34±0.1 0.35

R59–E63 1.00±0.1 0.42

TABLE S3. List of ψ-value mutations. For ubiqutin (1ubq), two experimental ψ-values (residue pairs 2–16 and 44–70)
involve residues that do not form native contacts in the crystal structure. We calculated theoretical ψ-values for the nearest
native contacts in our model, replacing these pairs with contacts 1–16 and 44–68, respectively. Data points are from the
following references, modified as described in Sec. S5: 1igd (24), 1k53 (25), 1ubq (5) and 2acy (26).
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FIG. S7. Comparison of predicted and experimental φ-values. Predictions are indicated by blue circles, and experimental
points are shown as black squares. Experimental errors are assumed to be 0.1 unless otherwise indicated; see Tables S1 and S2
for a list of data points.
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