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1 Case with Missing Outcomes

We now consider the case where the outcome variable Y may be missing for some participants.

Let ∆ denote the indicator of Y being observed, and assume the data in a trial consists of

n independent, identically distributed realizations (Wi, Ai,∆i,∆iYi)
n
i=1 of the random vector

(W,A,∆,∆Y ), each drawn from the (unknown) probability distribution P . The parameter

1



of interest is the same as in the case of no missing outcomes, i.e., ψ as defined in (3.1).

Define the unadjusted estimator of ψ as∑n
i=1 ∆iYiAi∑n
i=1 ∆iAi

−
∑n

i=1 ∆iYi(1− Ai)∑n
i=1 ∆i(1− Ai)

.

We assume the outcome is missing at random [1], i.e., P (∆ = 1|W,A, Y ) = P (∆ = 1|W,A).

Under this assumption, the average treatment effect ψ is still identified by the distribution

of the observed data (W,A,∆,∆Y ) since we have for each a ∈ {0, 1},

P (Y = 1|A = a) = EWP (Y = 1|A = a,W ) = EWP (Y = 1|∆ = 1, A = a,W ), (1)

where EW denotes expectation with respect to the marginal distribution of W under P ; the

first equality above follows from the randomization assumption that A and W are indepen-

dent, and the second equality follows from the missing at random assumption.

All of the adjusted estimators we consider can be modified to handle missing outcomes,

under the missing at random assumption. We show how to do this for PLEASE. The main

change is that a logistic regression working model for P (∆ = 1|A,W ) will be incorporated

into the DR-WLS estimator and PLEASE (see Sections 4.1 and 4.2). Let h(W,A, η) be a

logistic regression working model for P (∆ = 1|A,W ), which contains an intercept, a main

term A, and is allowed to have additional, prespecified main terms and interaction terms,

e.g., h(W,A, η) = expit(η0 +η1A+η2W1 +η3W1A+η4W2). Fit the working model h(W,A, η)

using maximum likelihood estimation to obtain the vector of estimated coefficients η̂. The

DR-WLS estimator of Section 4.1 is modified to be the following:

For each study arm a ∈ {0, 1}, define a logistic regression working modelQ(a)(W̃ , β(a))

for P (Y = 1|∆ = 1, A = a,W ), e.g., Q(a)(W̃ , β(a)) = expit(β(a)T W̃ ). Fit the

model Q(1)(W̃ , β(1)) for P (Y = 1|∆ = 1, A = 1,W ) using weighted logistic

regression with weights
{
h(W, 1, η̂)g(W̃ , α̂)

}−1
and only using data from par-

ticipants with both ∆ = 1, A = 1; similarly, fit the model Q(0)(W̃ , β(0)) for

P (Y = 1|∆ = 1, A = 0,W ) using weighted logistic regression with weights[
h(W, 0, η̂)

{
1− g(W̃ , α̂)

}]−1
and only using data from participants with both

∆ = 1, A = 0. For each study arm a ∈ {0, 1}, the initial estimator (called

DR-WLS) for E(Y |A = a) is computed using (5).

Next, the augmented model gaug is fit as in the original Step 1 to obtain gaug(W̃ , α̃, γ̃). The

following procedure is added to Step 1, to augment the working model h(W,A, η):
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Define the following new variables:

u′1(W,A) = A{Q(1)(W̃ , β̂(1))− µ̂1} {h(W, 1, η̂)}−1 ;

u′0(W,A) = (1− A){Q(0)(W̃ , β̂(0))− µ̂0} {h(W, 0, η̂)}−1 .

Fit the following augmented logistic regression model for P (∆ = 1|A,W ):

haug(W,A, η, ν) = expit {logit(h(W,A, η)) + ν0u
′
0(W,A) + ν1u

′
1(W,A)} ,

to obtain estimated coefficients η̃, ν̃.

In Step 2, the DR-WLS estimator is computed using the augmented model fits for gaug

and haug from the modified Step 1. This completes the description of how PLEASE is

modified to handle missing outcome data. Under the missing at random assumption, and if

the working model h is correctly specified, then properties C-E hold for this estimator, and

it is guaranteed to be at least as precise as the IPW estimator that uses the working models

g and h in constructing its weights. Also, under the missing at random assumption, if the

conditional probability of the outcome being missing P (∆ = 1|A,W ) depends on W , then

the unadjusted estimator is not guaranteed to be consistent; in contrast, the above estimator

is consistent under the missing at random assumption if either of the following hold: the

working model h is correctly specified, or the working modelsQ(0), Q(1) are correctly specified.

In Section 7 of the Supplementary Material, we sketch the proof of the above claims.

We ran additional simulations comparing PLEASE to the unadjusted estimator in the

context of the MISTIE II trial where we set outcome data to be missing at random. We

considered scenarios 1 and 2, where the only change was to set P (∆|A,W ) such that ap-

proximately 15% of outcome values were missing (i.e., ∆ = 0). We first ran simulations

where data is generated with missingness completely at random, denoted MCAR, where we

set P (∆|A,W ) to not depend on A,W , and to equal 0.15. In the missing at random (MAR)

case, we similarly set the marginal probability of missingess to approximately 15% and we

generated:

P (∆ = 0|A,W ) = logit−1(−3.57+0.23×(NIHSS−22)×(1−A)+1.5×0.23×(NIHSS−22)×A),

where NIHSS is an element of the vector W . This results in a greater probability of a

missing outcome for larger values of NIHSS, and creates an interaction by treatment arm

(with greater probability of a missing outcome under A = 1 than A = 0, conditioned on W ).
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The resulting performance of PLEASE versus the unadjusted estimator is shown in Ta-

ble 1. The measure of relative efficiency is the ratio of mean squared error (MSE) comparing

that for the unadjusted estimator to the that for PLEASE. We use MSE instead of the ratio

of variances since the unadjusted estimator is not consistent in some cases. Each case la-

beled zero average treatment effect corresponds to scenario 1, and each case labeled positive

average treatment effect corresponds to scenario 2. (Scenarios 1 and 2 are defined in Section

5.1 of the main paper.) The only modifications we make are to introduce a missingness

distribution P (∆|A,W ) as described above. In each case involving MCAR, there is little

bias in either estimator, and similar efficiency gains for PLEASE as in the complete data

case. In the MAR case, as expected, the unadjusted estimator has severe bias, while the

PLEASE estimator (which uses correctly specified propensity score and missingness working

models) has very small bias. The efficiency gains for the PLEASE estimator were large in

the case of zero average treatment effect, and there was only a small gain for the case with

a positive average treatment effect.

To determine if the PLEASE estimator would outperform the unadjusted estimator un-

der MAR data in larger studies, we tripled the size of the simulated studies to n = 1236. We

observed larger efficiency gains for both cases (zero and positive average treatment effect)

than for the smaller sample size (n=412) simulation studies. This is because at the larger

sample sizes, bias dominates variance in terms of the mean squared error (MSE); the unad-

justed estimator, unlike PLEASE, can have substantial bias even at large sample sizes due

to not adjusting for informative missingness.

2 Additional Covariates Used in Rotnitzky et al.K=1

We describe our implementation of the estimator referred to as Rotnitzky et al.K=1 in Section

4.3, which was applied in the simulation studies in Sections 5 and 6. It is a special case from

the class of estimators in Rotnitzky et al. [2, Section 3]. In the context of a randomized trial,

this class of estimators is defined by a model h(a, τ) for E(Y |A = a), where τ = (τ0, τ1). We

set h to be the saturated model E(Y |A = a) = h(a, τ) = (1−a)τ0 +aτ1. Let τ ∗ = (E(Y |A =

0), E(Y |A = 1)), and define the contrast φ1(τ
∗) = τ ∗1 −τ ∗0 , which equals ψ (defined in Section

3.1). We define the function b(a) to be the column vector b(a) = (1− a, a)T .

The above definitions, along with the working models as defined in Section 4, uniquely

determine an estimator in the class from [2, Section 3]. This estimator has a similar structure

as the PLEASE estimator from Section 4.2, except for the modification described in Section

4.3 and that the following two additional covariates are added to the propensity score working
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model in Step 1:

uR1 (W̃ ) = {Q(1)(W̃ , β̆(1))− µ̆1}/g(W̃ , α̂);

uR0 (W̃ ) = {Q(0)(W̃ , β̆(0))− µ̆0}/{1− g(W̃ , α̂)},

where (β̆(0), β̆(1)) is the solution to the optimization problem in equation (12) of [2, Section

2.2], which depends on φ1 defined above, and where we define(
µ̆0

µ̆1

)
=

1

n

n∑
i=1

[
b(Ai)

Yi −Q(Ai)(W̃ , β̆(Ai))

g(W̃ , α̂)Ai{1− g(W̃ , α̂)}1−Ai
+

(
Q(0)(W̃ , β̆(0))

Q(1)(W̃ , β̆(1))

)]
.

Next, the analog of Step 2 from Section 4.2 is carried out.

(Please note: there is a notational difference in that [2] use β wherever we used τ ; the

reason we use τ is to avoid the notational conflict with β, which we already defined in Section

4.2 as the parameter in the outcome regression score working models.)

3 Calculation of q for simulation scenario 2

We separately consider each of the two trials: MISTIE II and PEARLS. First, define p0

to be the observed probability that Y = 1 based on the data set in the trial (pooling all

participants in that trial). Let RD denote the risk difference (i.e., average treatment effect)

observed in the trial, based on the unadjusted estimator. For example, for the MISTIE II

trial, p0 = 0.32 and RD = 0.12. We set q = RD/(1− p0), as explained in Section 5.1.

We detail the calculations required for simulation scenario 2, in which Y and W are

dependent and there is a positive average treatment effect. For a given simulated study of

size n, each simulated participant’s values of the variables (Wi, Yi) are drawn by resampling

individuals from the real trial data set with replacement. Next, A is assigned randomly with

probability 0.5, independent of (Wi, Yi). The corresponding data generating distribution has

average treatment effect equal to 0. Instead, we would like to simulate from a distribution

where the average treatment effect equals p0. To engineer this, for each participant who

initially was assigned A = 1 and Y = 0, with probability q we randomly reassign their value

of Y to be 1. For example, for the MISTIE II trial where p0 = 0.32 and RD = 0.12, the

solution to the above equation is q = 0.18.
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4 Details of PEARLS simulation study

We provide details for how Y was simulated based on the PEARLS trial. This was done

analogously as for the MISTIE II trial, as described in Section 5.1.

Simulations are conducted under the following four different types of data generating

distributions (called scenarios):

Scenario 1: Y and W dependent; zero average treatment effect.

Scenario 2: Y and W dependent; positive average treatment effect.

Scenario 3: Y and W independent; zero average treatment effect.

Scenario 4: Y and W independent; positive average treatment effect.

In scenarios 1 and 2, the relative increase in R2 was 3% and 2%, respectively. In scenario

1, after resampling (Y ,W ) from the observed PEARLS data, A is generated independent of

(Y ,W ) with probability 1/2 of being 0 or 1. This induces zero average treatment effect. For

scenario 2, we desired to replicate the same magnitude of average treatment effect observed

in the PEARLS trial. After generating each simulated participant’s data as in scenario 1,

for each participant with A = 0 and Y = 0, we replaced the participant’s outcome Y by 1,

with probability q = 0.07 (independent of W ). In scenario 3, W is generated by resampling

with replacement from the empirical distribution in the PEARLS data, and A is assigned

independent of W with probability 1/2 of being 0 or 1; Y is generated, independent of (W,A),

from a Bernoulli distribution with probability p = 0.18, which is the observed proportion of

successes in PEARLS ignoring treatment assignment (pooling all participants). In scenario

4, W is generated by resampling with replacement from the empirical distribution in the

PEARLS data, and A is assigned independent of W with probability 1/2 of being 0 or 1;

the conditional distribution of Y given A = a,W is set to be Bernoulli with probability pa

of Y = 1, where pa is the observed proportion of successes in each treatment group in the

PEARLS trial (p0 = 0.21 and p1 = 0.15).

5 Proof that Properties B-D hold for PLEASE when the parameter is any

smooth contrast between E(Y |A = 1) and E(Y |A = 0)

Consider the case of no missing outcomes. It follows directly from the arguments in [2] that

the PLEASE estimator has properties B-E from Section 3.3, when the parameter of interest

is the difference between population means E(Y |A = 1) − E(Y |A = 0). We consider the

more general case when the parameter is any smooth contrast between E(Y |A = 1) and
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E(Y |A = 0) as defined in Section 8 of the main paper. Let f be any differentiable function

from R2 to R, and denote the corresponding contrast by

ψf = f(E(Y |A = 1), E(Y |A = 0)).

Let f(µ̄1, µ̄0) denote the generalization of PLEASE to estimate ψf given in Section 8 of the

main paper. Define the unadjusted estimator of ψf to be f(m1,m0), where ma is the sample

mean among those assigned to arm a, for each a ∈ {0, 1}.
We next show that for any P ∈ M, the asymptotic variance of the adjusted estimator

f(µ̄1, µ̄0) is at most that of the unadjusted estimator f(m1,m0); this implies property B

holds when the parameter of interest is ψf . The proof is a direct extension of the results of

[3] and [2], based on applying the delta method.

[2] show that as sample size n→∞, the distribution of

√
n {(µ̄1, µ̄0)− (E(Y |A = 1), E(Y |A = 0))}

converges to a bivariate normal distribution with mean (0, 0) and covariance matrix Σadj,

and the distribution of

√
n {(m1,m0)− (E(Y |A = 1), E(Y |A = 0))}

converges to a bivariate normal distribution with mean (0, 0) and covariance matrix Σunadj.

[2], on page 447, prove that Σadj −Σunadj is negative semi-definite. These results hold under

regularity conditions given by [2, pp. 445].

Applying the delta method, we have

√
n {f(µ̄1, µ̄0)− f(E(Y |A = 1), E(Y |A = 0))}

converges to a normal distribution with mean 0 and covariance (∇f)TΣadj∇f , and

√
n {f(m1,m0)− f(E(Y |A = 1), E(Y |A = 0))}

converges to a normal distribution with mean 0 and covariance (∇f)TΣunadj∇f . Since

Σadj − Σunadj is negative semi-definite, we have

(∇f)TΣadj∇f ≤ (∇f)TΣadj∇f,

that is, the asymptotic variance of the adjusted estimator f(µ̄1, µ̄0) is smaller or equal to the
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asymptotic variance of the unadjusted estimator f(m1,m0). This shows property B holds

when the parameter of interest is the contrast ψf = f(E(Y |A = 1), E(Y |A = 0)).

Property C follows from the analogous proof in [2], combined with the delta method

as above. Property D is immediate since PLEASE does not require solving a non-convex

optimization problem. Since the extension of PLEASE to estimate ψf is defined as f(µ̄1, µ̄0),

it is always in the range of the function f ; this is the analog of property E.

6 Sensitivity of our simulation studies based on the MISTIE trial to exclusion

of a highly prognostic baseline variable

To assess the sensitivity of our simulation studies to excluding a highly prognostic baseline

variable, we excluded the NIHSS from our simulation studies based on the MISTIE trial.

Table 2 displays the results. In scenario 1, the efficiency gains (compared to the unadjusted

estimator) were roughly 13% for the IPW estimator and ranged from 15% to 27% for the

other adjusted estimators. In scenario 2, efficiency gains were roughly 10% for the IPW

estimator and ranged from 11% to 18% for the other adjusted estimators. These efficiency

gains are substantially lower than when NIHSS is included (as shown in Table 2). This shows

that leaving out a highly prognostic baseline variable can substantially reduce the efficiency

gains of the adjusted estimators.

7 Sketch of proofs for claims involving outcomes missing at random

Throughout this section, we make the missing at random assumption. Below, we refer to

the modified version of PLEASE given in Section 1 of the Supplementary Material simply

as PLEASE. It follows directly from the arguments of [2] that if the working model h is

correctly specified, then properties C-E hold for PLEASE.

We next show that if the working model h is correctly specified, PLEASE is guaran-

teed to be at least as precise as the IPW estimator that uses working models g and h in

constructing its weights. Let α∗, β(0)∗, β(1)∗, η∗, µ∗0, µ
∗
1 denote the limits (in probability) of

α̂, β̂(0), β̂(1), η̂, µ̂0, µ̂1, respectively. Let α∗aug, γ
∗
aug, η

∗
aug, ν

∗
aug denote the limits of α̃, γ̃, η̃, ν̃, re-

spectively. By the regularity assumptions in Section 3.3, these limits exist. Let u∗0, u
∗
1, u
′∗
0 , u

′∗
1

denote the functions u0, u1, u
′
0, u
′
1, respectively, where each of α̂, β̂(0), β̂(1), η̂, µ̂0, µ̂1, α̃, γ̃, η̃, ν̃ is

replaced by its corresponding limit. Similarly, let g∗aug and h∗aug denote the augmented mod-

els gaug and haug, respectively, where each of u0, u1, u
′
0, u
′
1 is replaced by the corresponding

function u∗0, u
∗
1, u
′∗
0 , u

′∗
1 .

By the results of [2, pp. 446-448] it suffices to show the following two terms are contained
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in the linear span of the scores of the augmented models g∗aug(W̃ , α, γ) and h∗aug(W,A, η, ν)

at (α∗aug, γ
∗
aug) and (η∗aug, ν

∗
aug):

∆(1− A)
[
h(W, 0, η∗)

{
1− g(W̃ , α∗)

}]−1 {
Q(0)(W̃ , β(0)∗)− µ∗0

}
−
[
Q(0)(W̃ , β(0)∗)− µ∗0

]
;

(2)

∆A
[
h(W, 1, η∗)g(W̃ , α∗)

]−1 {
Q(1)(W̃ , β(1)∗)− µ∗1

}
−
[
Q(1)(W̃ , β(1)∗)− µ∗1

]
. (3)

The above terms represent components of the influence function for certain augmented,

inverse probability weighted estimators, as described by [2, Section 2.1].

The score of g∗aug(W̃ , α, γ) at (α∗aug, γ
∗
aug) is the vector with components

{A− g∗aug(W̃ , α∗aug, γ
∗
aug)}(W̃ T , u∗0(W ), u∗1(W )). (4)

The score of h∗aug(W,A, η, ν) at (η∗aug, ν
∗
aug) is the vector with components

{∆− h∗aug(W,A, η∗aug, ν∗aug)}(v(W ), u′∗0 (W,A), u′∗1 (W,A)), (5)

where v(W ) is the vector of variables in the linear part of the logistic regression model

h(W,A, η). Since we assumed h is correctly specified (and g is correctly specified by the trial

being randomized, as discussed in Section 3.2), it follows by similar arguments as in [2] that

g∗aug(W̃ , α∗aug, γ
∗
aug) ≡ g(W̃ , α∗), and h∗aug(W,A, η

∗
aug, ν

∗
aug) ≡ h(W,A, η∗). (6)

Since the trial is randomized, we have A and W are independent, i.e., P (A = 1|W ) =

P (A = 1) = 1/2. Therefore, the working model g is correctly specified (since it contains an

intercept) and we have g(W̃ , α∗) = 1/2 for all values of W̃ .
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Consider the following linear combination of components of the scores (4) and (5):

−{A− g∗aug(W̃ , α∗aug, γ
∗
aug)}2u∗0(W ) + {∆− h∗aug(W,A, η∗aug, ν∗aug)}2u′∗0 (W,A)

= −{A− g(W̃ , α∗)}2u∗0(W ) + {∆− h(W,A, η∗)}2u′∗0 (W,A)

= −{A− g(W̃ , α∗)}{1− g(W̃ , α∗)}−1u∗0(W ) (7)

+{∆− h(W,A, η∗)}{1− g(W̃ , α∗)}−1u′∗0 (W,A) (8)

= −{A− g(W̃ , α∗)}{Q(0)(W̃ , β(0)∗)− µ∗0}{1− g(W̃ , α∗)}−1

+{∆− h(W,A, η∗)}(1− A){Q(0)(W̃ , β(0)∗)− µ∗0}
[
h(W, 0, η∗)

{
1− g(W̃ , α∗)

}]−1
= −{A− g(W̃ , α∗)}{Q(0)(W̃ , β(0)∗)− µ∗0}{1− g(W̃ , α∗)}−1

+∆(1− A){Q(0)(W̃ , β(0)∗)− µ∗0}
[
h(W, 0, η∗)

{
1− g(W̃ , α∗)

}]−1
−(1− A){Q(0)(W̃ , β(0)∗)− µ∗0}

{
1− g(W̃ , α∗)

}−1
= ∆(1− A){Q(0)(W̃ , β(0)∗)− µ∗0}

[
h(W, 0, η∗)

{
1− g(W̃ , α∗)

}]−1
− {Q(0)(W̃ , β(0)∗)− µ∗0},

where in (7) and (8) we used that g(W̃ , α∗) = 1/2 for all values of W̃ , as argued above. The

last line in the above display equals (2). This shows (2) is in the linear span of the scores (4)

and (5). A similar derivation shows that {A−g(W̃ , α∗)}2u∗1(W )+{∆−h(W,A, η∗)}2u′∗1 (W,A)

equals (3), and therefore (3) is also in the linear span of the scores (4) and (5). This completes

the verification that (2) and (3) are in the linear span of the scores of gaug(W̃ , α, γ) and

haug(W,A, η, ν) at (α∗aug, γ
∗
aug) and (η∗aug, ν

∗
aug). By the results of [2], this implies that if the

working model h is correctly specified, PLEASE is guaranteed to be at least as precise as

the IPW estimator that uses the same working models g and h in constructing its weights.

Also, it follows from the proof in [2] that PLEASE is consistent under the missing at

random assumption if either of the following hold: the working model h is correctly specified,

or the working models Q(0), Q(1) are correctly specified.

8 R and SAS code to compute the PLEASE

The R and SAS code is provided in a separate zip file. The R program computes PLEASE

with corresponding bootstrap confidence intervals for the case of binary Y where the risk

difference is the average treatment effect of interest. The SAS program provides code to

compute PLEASE for a variety of outcome distributions; the working outcome regression

models may be specified as binomial with logit link, gamma with inverse link, normal with

identity link, and poisson with log link. A logistic regression model is used for the working
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propensity score model. The output consists of the PLEASE estimators of the mean under

treatment 0 and treatment 1; the user can then compute any smooth contrast of interest

f (defined in Section 8 of the main paper) by substituting these estimated values into the

function f as in Step 2’ of Section 8 of the main paper. Standard errors are obtained via

bootstrap; the SAS program does not include the bootstrap calculations.

http://people.csail.mit.edu/mrosenblum/papers/CovAdjRSAS.zip
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Table 1: Implications of missing data on simulated randomized trials with
Y dependent on W (scenarios 1 and 2). We compared the relative efficiency
of PLEASE to the unadjusted estimator assuming roughly 15% missing data
within the context of the MISTIE II trial. The missing data was generated
completely at random (MCAR) or at random (MAR). The relative MSE com-
pares the MSE of PLEASE to that of the unadjusted estimator.

MCAR, zero average treatment effect, n = 412
Estimator Bias Variance MSE Rel.MSE
Unadjusted 0.00010 0.0025 0.0025 1.000
PLEASE 0.000079 0.0018 0.0018 1.410

MCAR, positive average treatment effect, n = 412
Estimator Bias Variance MSE Rel.MSE
Unadjusted -0.00013 0.0027 0.0027 1.000
PLEASE -0.00094 0.0021 0.0021 1.270

MAR, zero average treatment effect, n = 412
Estimator Bias Variance MSE Rel.MSE
Unadjusted 0.020 0.0012 0.0016 1.000
PLEASE 0.000015 0.00077 0.00077 1.610

MAR, positive average treatment effect, n = 412
Estimator Bias Variance MSE Rel.MSE
Unadjusted 0.013 0.0011 0.0012 1.000
PLEASE -0.00084 0.0010 0.0010 1.060

MAR, zero average treatment effect, n = 1236
Estimator Bias Variance MSE Rel.MSE
Unadjusted 0.019 0.0012 0.0016 1.000
PLEASE 0.000015 0.00077 0.00077 2.112

MAR, positive average treatment effect, n = 1236
Estimator Bias Variance MSE Rel.MSE
Unadjusted 0.012 0.0011 0.0012 1.000
PLEASE -0.00084 0.0010 0.0010 1.214
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Table 2: Sensitivity of efficiency gains to exclusion of a predictive baseline
variable. Data are simulated from the MISTIE II trial assuming Y is depen-
dent on W (scenarios 1 and 2). The propensity score and outcome regression
model include an intercept, age and ICH volume. The NIHSS is not included
even though this variable is highly correlated with the outcome. The relative
efficiency compares the variance of the adjusted estimators to the variance of
the unadjusted estimator.

Scenario 1: Y and W dependent, zero average treatment effect
Estimator Bias Variance MSE Rel.Efficiency
Unadjusted -0.00019 0.0021 0.0021 1.000
IPW -0.00018 0.0019 0.0019 1.130
Model standardization -0.00017 0.0018 0.0018 1.150
DR-WLS -0.00017 0.0018 0.0018 1.150
Tan -0.00014 0.0017 0.0017 1.210
PLEASE -0.00011 0.0018 0.0018 1.190
Rotnitzky et al.K=1 -0.00010 0.0017 0.0017 1.270
Gruber and van der Laan -0.00013 0.0018 0.0018 1.160

Scenario 2: Y and W dependent, positive average treatment effect
Estimator Bias Variance MSE Rel.Efficiency
Unadjusted -0.00026 0.0023 0.0023 1.000
IPW -0.00028 0.0021 0.0021 1.100
Model standardization -0.00031 0.0020 0.0020 1.110
DR-WLS -0.00031 0.0020 0.0020 1.110
Tan -0.0011 0.0020 0.0020 1.120
PLEASE -0.00056 0.0020 0.0020 1.130
Rotnitzky et al.K=1 -0.00043 0.0019 0.0019 1.180
Gruber and van der Laan -0.000098 0.0020 0.0020 1.120
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