

Figure S1

Fig. S1. Hind paw withdrawal thresholds to von Frey fiber stimulation measured before (-14, -7 days) and after (1, 4, 7, 14, 21 and 28 days) SNI surgery. Symbols (n=4-6 mice/strain) represent mean \pm S.E.M. withdrawal threshold (g); solid lines represent the ipsilateral hind paw and dotted lines the contralateral hind paw.

Fig. S2. Sex differences in *Chrna6* DRG mRNA expression in SM mice, and their correlation with sex differences in mechanical allodynia. A) Basal DRG expression of probeset 1450426_at (*Chrna6*) in male and female mice. B) Confirmation of microarray data using qPCR in three mouse strains, including SM. Bars represent mean \pm S.E.M. expression relative to β -actin (3 biological replicates; 2 technical replicates), and calibrated to DBA/2 males. c) Mechanical allodynia in SM mice of both sexes. Symbols (*n*=8 mice/sex) represent mean \pm S.E.M. withdrawal threshold (g).

Probeset	Gene	Protein	Fold Chg.
1426121_at	Mrgpra3	MAS-related GPR, member A3	-100.0
1450426_at	Chrna6	cholinergic receptor, nicotinic, $\alpha 6$	-67.3
1457651_x_at	Rem2	Rad and gem-related GTP binding protein 2	-52.0
1460663_at	Cckbr	cholecystokinin B receptor	43.0
1420573_at	Hoxd1	homeobox D1	-42.9
1450143_at	Rasgrp1	RAS guanyl releasing protein 1	-41.7
1450427_at	Chrna6	cholinergic receptor, nicotinic, $\alpha 6$	-41.6
1447812_x_at	Flnc	filamin C, y (actin binding protein 280)	33.6
1429922_at		RIKEN clone: A230108N10	-30.2
1453060 at	Rgs8	regulator of G-protein signaling 8	-30.1

Fig. S3. Downregulation of *Chrna6* by nerve injury, and correlation with mechanical allodynia. (A) The 10 probesets with greatest fold-changes in DRG gene expression after nerve injury (spinal nerve ligation; SNL) in AKR/J mice (1). (B) The correlation between basal DRG expression of *Chrna6* and fold-decrease in *Chrna6* expression 3 days after SNL in the five mouse strains studied by Persson et al. (2,3) (probeset 1450426_at). (C) The correlation between DRG *Chrna6* expression after SNL and mechanical allodynia in the three strains tested behaviorally by Persson et al. (2,3).

Fig. S4. Increased ipsilateral mechanical allodynia in *Chrna6* (α 6 KO) but not *Chrna4* null mutants (α 4 KO). A) Increased mechanical allodynia after chronic constriction injury (CCI) in a6 KO mice compared to wildtypes (WT); performed at Virginia Commonwealth University. Symbols represent mean \pm S.E.M. withdrawal threshold (g). Genotype differences were highly significant (p<0.001) at all postoperative time points. B) Increased mechanical allodynia after CCI and CFA in α 6 KOs, measured at the peak of allodynia at postoperative day 14 and post-injection day 3, respectively. Bars represent mean \pm S.E.M. percentage of maximum possible allodynia. *p<0.05, ***p<0.001 compared to WT by *t*-test. C) No CCI or CFA phenotype in α 4 KOs; tested exactly as in graph B.

Fig. S5. No altered sensitivity of *Chrna6* KO mice in a battery of acute and tonic nociceptive assays. Bars represent mean \pm S.E.M. withdrawal latencies (A-C), withdrawal thresholds (D), latencies to nocifensive behavior (E), number of abdominal constrictions (F), or percentage of samples featuring licking behavior (G). See Mogil et al. (65) for methodological details.

Fig. S6. Physical contacts between P2X3 and $\alpha 6\beta 4^*$ nAChRs revealed by fluorescence lifetime imaging microscopy. (A) Pixel-by-pixel analysis of FLIM data. *a1*: exemplar mouse cortical neuron transfected with $\alpha 6$ -mCherry $\beta 3\beta 4$ + P2X3-eYFP. *a2*: exemplar neuron cortical neurons transfected with $\alpha 6$ -eYFP $\beta 4$. (B,C) Analysis of data from 10 mouse cortical neurons transfected with (B) $\alpha 6$ -mCherry $\beta 4$ + P2X3-eYFP, (C) and $\alpha 6$ -mCherry $\beta 3\beta 4$ + P2X3-eYFP. Error bars represent SEM.

Table 51. Affymetrix gene expression data of all Orn* prober, and correlation with baseline nociceptive sensitively and mechanical alloginia.													Pareline	Allochunia																		
ProbeSet	Symbol	AKR/J	BALB/cByJ 1	12951/Svh E	TBR T+ 1 S	ar/a c	57BL/6J N	IZW/LacJ B	UB/BnJ C	BA/J 8	ж/ни з	M/J F	u/J d	58/J R	uus/J	NZO/HILU I	BA/2J 0	3H/HeJ N	OD/LtJ C	57BR/cdJ F	/B/NJ P/	/u N	IRL/MoJ SI	NR/J A	/J N	ON/LtJ	A mumixeA	verage S	p 1	(CV	Corr.	Corr.
Baseline Nociceptive Sensitivity (g)	6	0.32	0.52	0.14	0.29	0.73	0.25	0.25	0.71	0.33	0.24	0.40	0.39	0.32	0.26	0.56	0.16	0.50	0.47	0.48	0.13	0.27	0.31	0.24	0.40	0.45		-				
Mechanical Allodynia (% max.)	b.	70.7	71.5	80.8	83.8	82.9	71.4	65.6	79.2	70.1	74.5	50.3	89.9	75.2	74.8	69.8	53.3	54.5	77.8	75.1	74.1	88.2	84.9	69.8	80.0	68.0						
1418852_at	Chrna1	4.5	4.4	4.5	4.5	4.6	4.5	4.5	4.4	4.6	4.4	4.5	4.4	4.4	4.5	4.5	4.5	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.6	4.5	0.05	0.01	0.02	-0.08
1425409_at	Chrna2	3.9	3.9	3.9	3.9	3.9	4.7	3.9	3.9	4.0	4.0	4.0	3.8	3.9	3.9	4.0	3.9	3.9	3.9	3.9	3.9	3.9	4.0	3.9	3.9	3.9	4.7	4.0	0.16	0.04	-0.26	-0.08
1455931 at	Chrna3	19.2	19.0	12.2	27.7	19.2	19.5	17.1	23.4	33.0	19.2	37.8	18.9	19.2	23.2	19.3	18.2	19.0	19.2	19.2	19.3	19.3	19.2	8.9	19.1	25.5	37.8	21.3	5.74	0.27	0.20	-0.27
1452010_at	Chrna3	18.3	17.9	14.3	11.8	27.7	14.5	15.0	21.1	20.1	21.1	39.5	17.5	16.0	26.0	22.5	12.3	19.0	18.3	18.3	18.4	27.8	12.1	12.1	15.2	21.8	39.5	19.9	6.23	0.31	0.36	-0.21
1444368_at	Chrna3	5.2	5.1	5.5	5.8	5.2	5.3	5.2	5.1	5.4	5.2	5.4	5.1	5.2	5.2	5.4	6.0	5.1	5.2	5.1	5.3	5.7	5.3	5.2	5.2	5.3	6.0	5.3	0.22	0.04	-0.46	-0.10
Average	Chrna3	14.3	14.0	10.7	15.1	17.4	13.1	12.4	16.5	19.5	15.2	27.6	13.8	13.5	18.1	15.7	12.2	14.3	14.2	14.2	14.3	17.6	12.2	8.8	13.2	17.5	27.8	15.5	3.56	0.23	0.31	-0.27
1421203_at	Chrna4	4.7	4.7	4.7	4.7	4.6	4.7	4.6	4.6	4.8	4.6	5.1	4.6	4.5	4.6	5.1	4.7	4.5	4.6	4.7	4.7	4.7	4.7	4.8	5.1	4.6	5.1	4.7	0.15	0.03	0.07	-0.21
1456354_at	Chrna4	6.5	6.5	6.8	7.1	9.7	6.8	6.6	6.5	6.9	6.5	6.8	6.5	6.5	6.5	6.8	6.7	6.5	6.6	6.6	6.6	6.7	6.6	6.6	6.6	6.8	9.7	6.9	0.63	0.09	0.41	0.18
1421202_at	Chrna4	5.8	6.7	5.8	6.0	5.8	10.5	5.7	5.7	6.1	5.5	5.9	5.5	5.6	5.8	8.2	5.9	6.1	5.8	5.7	6.0	5.8	6.3	5.7	5.7	6.5	10.5	6.3	1.05	0.17	0.01	-0.12
Average	Chrna4	5.7	6.0	5.8	5.9	6.7	7.3	5.6	5.6	5.9	5.5	5.9	5.5	5.5	5.6	6.7	5.8	5.7	5.6	5.6	5.8	5.7	5.9	5.7	5.8	6.0	8.4	6.0	0.42	0.07	0.22	-0.04
1442035 at	Chrna5	9.4	9.2	9.9	10.2	10.0	9.9	9.5	9.1	9.9	9.4	10.7	8.7	9.3	9.4	10.0	10.1	9.1	9.6	9.3	9.6	9.8	9.8	9.5	9.5	9.6	10.7	9.7	0.42	0.04	-0.19	-0.28
1427401_at	Chrna5	5.5	5.2	5.6	5.6	5.5	5.6	5.6	5.5	5.7	5.5	5.6	5.1	5.5	5.6	6.4	5.6	5.3	5.6	5.4	5.6	5.6	5.6	5.5	5.5	5.5	6.4	5.6	0.22	0.04	-0.04	-0.16
Average	Chrna5	7.5	7.2	7.8	7.9	7.7	7.8	7.5	7.3	7.8	7.4	8.1	6.9	7.4	7.5	8.2	7.8	7.2	7.6	7.3	7.6	7.7	7.7	7.5	7.5	7.6	8.5	7.6	0.29	0.04	-0.15	-0.27
1450427 at	Chrna6	750.8	260.5	178.8	133.3	261.3	279.6	912.3	171.0	151.1	153.4	1657.2	349.9	216.1	752.4	1249.0	1118.8	1221.4	196.8	247.2	456.2	203.8	215.6	125.2	222.0	186.6	1657.2	512.6	436.30	0.85	0.02	-0.75
1450426_at	Chrna6	344.3	128.0	69.8	31.0	113.1	113.1	312.1	93.1	73.8	62.8	1054.4	11.3	102.7	407.0	373.4	402.1	360.6	103.4	106.9	176.5	111.1	97.1	47.3	113.9	104.2	1054.4	229.5	217.63	0.95	0.01	-0.72
Average	Chrna6	547.6	194.2	124.3	82.2	187.2	196.4	612.2	132.1	112.5	108.1	1355.8	180.6	159.4	579.7	811.2	760.4	791.0	150.1	177.1	316.3	157.4	156.3	86.3	168.0	145.4	1355.8	371.1	319.77	0.86	0.01	-0.76
1440681_at	Chrna7	508.7	449.4	564.9	287.7	475.7	660.3	673.3	636.7	432.9	257.6	714.8	387.4	472.1	903.5	770.6	223.2	427.7	566.3	585.4	721.5	649.8	467.7	490.8	482.2	385.0	903.5	542.3	164.09	0.30	0.05	0.00
1445615_at	Chrna9	13.0	13.3	15.5	32.3	19.3	13.5	12.3	13.7	13.8	16.2	14.8	10.3	10.4	11.4	13.8	13.2	16.7	14.2	12.2	13.5	20.6	13.6	11.1	14.6	14.1	32.3	15.4	4.39	0.29	0.04	0.24
1447214_at	Chrna9	6.9	6.9	7.3	7.6	6.9	7.1	6.9	6.8	7.1	6.8	7.1	6.8	6.8	6.7	7.0	7.0	6.8	6.9	6.9	7.0	7.0	7.0	6.9	6.9	6.9	7.6	7.0	0.18	0.03	-0.28	0.09
1430086_at	Chrna9	6.9	6.8	7.3	7.4	7.6	8.3	6.9	6.6	7.3	6.9	7.3	6.7	6.7	6.9	7.3	7.2	6.8	6.9	6.8	7.0	7.1	7.1	6.9	7.0	6.9	8.3	7.1	0.35	0.05	-0.14	-0.06
Average	Chrna9	8.9	9.0	10.0	15.8	11.3	9.7	8.7	9.1	9.4	10.0	9.7	7.9	7.9	8.3	9.4	9.1	10.1	9.3	8.6	9.2	11.5	9.2	8.3	9.5	9.3	16.1	9.8	1.55	0.16	0.02	0.22
1420682_at	Chrnb1	5.3	5.2	5.3	6.8	5.3	5.4	5.2	5.2	5.4	5.2	5.6	5.2	5.2	5.3	5.3	5.4	5.2	5.3	6.1	5.3	5.3	5.3	5.3	5.3	5.3	6.8	5.4	0.34	0.06	-0.09	0.11
1436428_at	Chrnb2	177.1	194.7	203.7	215.3	182.3	292.0	207.0	153.4	187.8	221.1	269.9	168.8	182.1	228.7	273.8	205.3	165.1	166.8	198.0	291.5	248.0	158.5	159.8	144.7	190.2	292.0	206.8	42.85	0.21	-0.34	-0.21
1451842_a_at	Chrnb3	4.6	4.5	4.6	4.6	4.6	4.7	4.6	4.5	4.7	4.6	21.9	4.6	4.6	4.6	4.7	4.7	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	21.9	5.9	3.46	0.58	0.04	-0.48
1457008_at	Chrnb4	5.3	4.8	5.1	7.6	5.1	5.4	5.3	5.3	5.5	5.3	21.4	6.1	6.8	8.8	5.4	5.3	5.4	5.4	6.7	5.3	9.8	5.0	5.0	5.3	5.3	21.4	7.0	3.34	0.47	-0.02	-0.33
1425849_at	Chrnb4	5.7	5.7	5.8	5.8	5.7	5.8	5.7	5.6	5.9	5.9	5.8	5.6	5.7	5.7	5.8	5.8	5.6	5.7	5.7	5.7	5.8	5.8	5.7	5.7	5.7	5.9	5.7	0.08	0.01	-0.41	-0.13
Average	Chrnb4	5.5	5.3	5.4	6.7	5.4	5.6	5.5	5.4	5.7	5.6	13.6	5.8	6.2	7.3	5.6	5.5	5.5	5.6	6.2	5.5	7.8	5.4	5.4	5.5	5.5	13.7	6.4	1.68	0.26	-0.03	-0.33
1420761_at	Chrnd	3.5	3.5	3.6	3.5	3.5	3.5	3.5	3.4	3.5	3.6	3.5	3.8	3.4	3.5	3.5	3.5	3.4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.8	3.5	0.07	0.02	-0.24	0.32
1420560_at	Chrne	4.3	4.2	4.3	4.3	4.3	4.3	4.3	4.2	4.4	4.2	4.3	4.2	4.2	4.3	4.3	4.3	4.2	4.3	4.3	4.3	4.3	4.4	4.3	4.3	4.3	4.4	4.3	0.05	0.01	-0.36	-0.18
1452520_a_at	Chrng	5.0	5.0	5.1	5.3	5.0	5.2	5.0	4.9	5.3	4.9	5.2	4.9	5.0	5.0	5.2	5.1	4.9	5.1	5.0	5.1	5.1	5.1	5.0	5.0	5.0	5.3	5.1	0.11	0.02	-0.23	-0.10
1449532_at	Chrng	4.3	4.2	4.3	4.4	4.3	4.4	4.3	4.2	4.4	4.3	4.4	4.2	4.2	4.6	4.3	4.4	4.2	5.0	4.3	4.3	4.3	4.3	4.3	4.3	4.3	5.0	4.4	0.16	0.04	-0.06	0.04
1427728_at	Chrng	4.2	4.2	4.5	4.3	4.2	4.3	4.2	4.2	4.4	4.4	4.3	4.3	4.2	4.2	4.3	4.3	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.2	4.6	4.6	4.3	0.09	0.02	-0.33	0.02
Average	Chrng	4.5	4.5	4.7	4.7	4.5	4.6	4.5	4.4	4.7	4.5	4.6	4.5	4.5	4.6	4.6	4.6	4.5	4.8	4.5	4.6	4.6	4.6	4.5	4.5	4.6	4.9	4.6	0.08	0.02	-0.27	-0.01

Table S1. Affymetrix gene expression data of all Chrn * probes, and correlation with baseline nociceptive sensitivity and mechanical allodynia.

Chrom.	Interval (Mb) ^a	$\log p$	Candidate Genes ^b
15	45.37-45.86	3.24	<i>Kcnv1</i> (potassium channel, V1)
5	126.31-126.53	3.10	<i>Ubc</i> (ubiquitin C)
18	56.01-56.22	2.99	Aldh7a1 (aldehyde dehydrogenase, 7A1)
8	28.86-29.33	2.97	<i>Chrna6</i> (cholinergic receptor, nicotinic, $\alpha 6$)
			<i>Chrna3</i> (cholinergic receptor, nicotinic, α 3)
5	125.08-125.52	2.96	_
14	71.54-71.77	2.95	<i>Gfra2</i> (glial cell line derived neurotrophic factor, α 2)
5	127.24-127.45	2.94	_
8	28.26-28.47	2.87	<i>Chrna6</i> (cholinergic receptor, nicotinic, $\alpha 6$)
			<i>Chrna3</i> (cholinergic receptor, nicotinic, α 3)
5	126.54-126.77	2.86	_
5	125.83-126.05	2.83	<i>Ubc</i> (ubiquitin C)

Table S2. Top 10 correlated haplotypes (by *p*-value), genome-wide, with SNI-induced mechanical allodynia in 25 mouse strains.

^amm8 database, NCBI Build 36.

^bGenes within 500 kb on either side of interval were identified using the Mouse Genome Informatics database (<u>www.informatics.jax.org</u>). A PubMed search was performed using the name of the gene (or gene class) and the search term "pain". Genes with non-zero hits are listed.

Assay	Route (dose units)	Genotype	ED ₅₀ (95% CI)
SNI	i.p. (mg/kg)	WT L9'S KO	2.7 (1.8–4.2) 1.1 (0.7–1.6)* >100†
CFA	i.p. (mg/kg)	WT L9'S KO	1.3 (0.5–3.1) 0.3 (0.2–0.4)* >100†
SNI	i.c.v. (µg)	WT L9'S KO	14.0 (9.5–20.8) 11.4 (2.9–45) >100†
CFA	i.c.v. (µg)	WT L9'S KO	8.7 (2.0–37) 3.3 (0.2–47) >100†
SNI	i.t. (µg)	WT L9'S KO	20.7 (6.4–68) 21.0 (4.1–107) >100†
CFA	i.t. (µg)	WT L9'S KO	8.1 (2.0–33) 1.3 (0.2–7.4)* >100†
SNI	i.pl. (µg)	WT L9'S KO	49 (32–74) 17.8 (7.7–41) >100†
CFA	i.pl. (µg)	WT L9'S KO	12.6 (2.7–57) 3.9 (0.3–53) >100†

Table S3. Nicotine anti-allodynic $ED_{50}s$ in all genotypes.

*Significantly more sensitive than WT mice. †Significantly less sensitive than other genotypes.

Receptor(s)	Additional Agonist	ACh EC ₅₀ (µM)	ATP EC ₅₀ (µM)	Hill coefficient	n
α6(L9'S)β4		3.28 ± 0.11		1.36 ± 0.05	8
P2X ₂			23.9 ± 1.2	1.52 ± 0.10	18
		4.28 ± 0.10		1.30 ± 0.03	11
α6(L9'S)β4	ATP, 32 μM	4.52 ± 0.26		1.36 ± 0.09	14
$+P2X_2$	ATP, 100 μM	6.04 ± 0.82		1.46 ± 0.23	14
			22.2 ± 1.1	1.60 ± 0.11	11
	ACh, 100 µM		33.2 ± 3.6	1.32 ± 0.15	11
α6β4β3(V13'S)		1.25 ± 0.06		0.84 ± 0.03	10
		1.57 ± 0.09		0.84 ± 0.03	12
α6β4β3(V13'S)	ATP, 32 μM	2.36 ± 1.09		0.75 ± 0.18	19
$+P2X_2$	ATP, 100 μM	1.59 ± 0.45		0.67 ± 0.09	8
			23.3 ± 1.7	1.58 ± 0.15	11
	ACh, 100 µM		24.5 ± 3.1	1.81 ± 0.35	12
P2X ₃ (K65A)			13.6 ± 1.3	$1.41 \pm .16$	12
		3.27 ± 0.13		1.31 ± 0.05	8
$+P2X_3(K65A)$			37.9 ± 6.1	0.94 ± 0.11	14
	ACh, 100 µM		32.8 ± 5.0	1.00 ± 0.04	11
<0.402 (141.23C)		1.09 ± 0.10		0.84 ± 0.05	7
$\alpha 6\beta 4\beta 3(V13^{\circ}S)$ +P2X ₂ (K65A)			7.60 ± 0.33	1.55 ± 0.09	14
1 2115(110011)	ACh, 100 µM		11.5 ± 1.6	1.34 ± 0.21	11
coo [†]		0.121 ± 0.006		1.12±0.05	15
α6β2*	ATP, 100 μM	0.121 ± 0.003		1.33±0.05	14
		0.15 ± 0.01		1.17 ± 0.08	11
α6β2 [‡]	ATP, 100 μM	0.3 ± 0.06		1.3±0.3	11
$+P2X_2$			26 ± 2	1.6±0.2	14
	ACh, 10 µM		29 ± 2	1.9±0.2	12
α6β2 [‡]		0.127 ± 0.006		1.19±0.05	11
+P2X ₃ (K65A)			44 ± 7	0.9±0.1	13

Table S4. Dose-response characteristics (EC₅₀ and Hill coefficients; mean \pm S.E.M.) for various combinations of α 6-containing nicotinic receptors and P2X receptors expressed in oocytes. *n*, number of cells.

Concentration-response data for each oocyte was normalized to the maximum current for that oocyte. The mean and S.E.M. for a series of oocytes were plotted against agonist or antagonist concentration and iteratively fitted to the following equation:

$$I_{A} = I_{\min} + \frac{I_{\max} - I_{\min}}{1 + 10^{n_{H} (\log A_{50} - \log A)}}$$

where *A* is the concentration of ligand present, I_A is the current in the presence of ligand concentration *A*, I_{\min} is the current when *A*=0; I_{\max} is the current when *A*=∞, A_{50} is the concentration of *A* that evokes a current equal to $(I_{max} + I_{min})/2$, and n_H is the Hill coefficient.