Supplementary Information

PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Twodimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method

Huynh Van Ngoc¹, Yongteng Qian¹, Suk Kil Han² and Dae Joon Kang^{1,*}

¹Department of Physics and Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-do 16419, Republic of Korea

²Teraleader Inc., 55-8, Techno-11ro, Yuseong-gu, Daejeon 34036, Republic of Korea

1. Electrochemical bubbling method for transfer of h-BN.

The front side of the h-BN film on the Pt foil was covered with PMMA. The Pt foil was immersed in an aqueous solution of 1 M NaOH for electrochemical delamination. The PMMA/PAV/h-BN/Pt foil and a bare Pt foil were employed as cathode and anode, respectively. The bubbling transfer was performed under a constant current of 1 A (corresponding electrolytic voltage of 5 - 12 V) for 1 - 5 min. After peeling the PMMA/PAV/h-BN film off from the Pt foil, it was rinsed with deionized water three times to remove residual NaOH. Finally, it was transferred onto a SiO₂(100 nm)/Si substrate.

^{*} Corresponding author: djkang@skku.edu

2. AFM images of transferred graphene after annealing

Figure S1. AFM images of graphene on SiO₂/Si substrate transferred using PMMA and PMMMA/PVA, respectively, after annealing.

3. Optical and Raman spectra of transferred graphene after annealing

Figure S2. Transferred graphene on SiO₂/Si substrate after annealing using the PMMA/PVA transferring method: (a) Optical microscope image and (b) Raman spectrum

4. Optical images and Raman spectroscopy of single layer h-BN transferred using the PMMA and PMMA/PVA methods

Figure S3. Transferred h-BN on SiO₂/Si substrate: (a, c) Optical microscope image and (b, d) Raman spectroscopy for the PMMA and PMMA/PVA methods of transfer, respectively.

5. Transferring MoS₂ to target substrates

Figure S4. Schematic illustration of PMMA/PVA assisted transfer of CVD-grown MoS_2 onto a SiO_2/Si substrate by oxide layer etching method.

6. Electrical transport properties of single layer MoS₂ FET devices

Figure S5. Electrical transport properties at ambient conditions of single layer MoS₂ FET devices based on PMMA/PVA transfer method. (a) Two probe measurements, (b) and (c) I_{ds} - V_{g} transfer characteristics and (d) I_{ds} - V_{ds} output characteristics.

To investigate the electrical properties of single layer MoS_2 , we prepared typical MoS_2 FETs on a 100 nm thick SiO₂ layer on a heavily boron doped Si (p++ Si) substrate. The a-Si served as the back gate electrode. Figure S5d shows the drain current versus drain-source voltage (I_{ds} - V_{ds}) curves for a single layer MoS₂ FET. The conductance of MoS₂ increases monotonically as the gate potential increases from -10 V to +10 V, exhibiting a typical n-type MoS₂ FET behaviour. Figure S5c shows the drain current versus gate-source voltage (I_{ds} - V_q) curves obtained by sweeping the gate voltage continuously from -5 V to 10 V at drain voltages ranging from 0 to 1 V. The transconductance (g_m) and field effect electron mobility (μ_e) of the back gate MoS_2 FETs were determined from the I_{ds} - V_q curves using the following equations: $g_m = dI_{ds}/dV_g$ and $\mu_e = g_m(L/W)(1/V_{ds}C_{ox})$. The gate oxide capacitance (C_{ox}) of a cylindrical wire on a planar substrate can be estimated by the relation $C_{ox} = \varepsilon_{r} \varepsilon_{0} L W/t_{ux}$ using a relative dielectric constant value (ε_r) of 3.9, a SiO₂ gate dielectric layer thickness (t_{ox}) of 100 nm, a MoS_2 conducting channel length (L) of approximately 10 μ m, and a width of approximately 20 μ m. For n-type MoS₂ FETs on a SiO₂/Si substrate, a threshold voltage (V_{th}) of -6.5 V and a transconductance (g_m) of 83 nS were extrapolated from the linear region of the I_{ds} - V_q curve at a value of 0.1 V for the V_{Ds} . The values of the field-effect electron mobility (μ_e) and the resistivity (ρ) for MoS₂ were calculated from two-probe measurements and found to be 12 cm² V⁻¹ s⁻¹ and 0.21 Ω cm, respectively (Fig. S5a). Electron carrier concentration (n_e) was calculated to be 2.58 × 10^{17} e/cm³ using the equation, $n_e = C_{ox}V_{th}/e\pi r^2 L$. The subthreshold swing given by $S.S = log [dV_g/d (logI_{ds})]$ was estimated to be 22 mV dec⁻¹.