1	Supplementary Methods and Supplementary Figures:
2	MS Title: Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency
3	modulates GABAergic functions and hippocampus-dependent functions
4	
5	Author List: Chia-Yuan Chang ¹ , Yi-Wen Chen ¹ , Tsu-Wei Wang ² , Wen-Sung Lai ^{1, 3, 4}
6	¹ Department of Psychology, National Taiwan University, Taipei, Taiwan
7	² Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
8	³ Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei,
9	Taiwan
10	⁴ Neurobiology and Cognitive Science Center, National Taiwan University, Taipei,
11	Taiwan
12	
13	Supplementary Methods
14	Animals:
15	All $Akt1^{-/-}$ and WT mice used in this study were generated from $Akt1^{+/-}$ breeding
16	pairs in the C57BL/6 genetic background (backcrossed for more than 10 generations)
17	and were genotyped via PCR analysis of mouse-tail DNA, as described previously ¹⁻³ .
18	After weaning, animals were housed in ventilated polysulfone cages (Alternative
19	Design Manufacturing & Supply, Arkansas, AR, U.S.A.) within the animal rooms of

20	the Psychology Department, National Taiwan University, and provided with food and
21	water <i>ad libitum</i> . All animals were 2–3 months old at the beginning of the experiments.
22	Animals were handled and weighed daily beginning at least 1 week before the
23	behavioural experiments. All animal procedures were performed according to protocols
24	approved by the appropriate Animal Care and Use Committees established by National
25	Taiwan University. The minimum number of mice was used in accordance with the 3R
26	principle of animal use. Adequate measures were taken to minimize potential pain or
27	discomfort experienced by the mice used in this study.
28	
29	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the
29 30	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells
29 30 31	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further
29 30 31 32	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin
29 30 31 32 33	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin (Invitrogen, Carlsbad, CA, U.S.A.) and cultured in Opti-MEM1 medium supplemented
29 30 31 32 33 34	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin (Invitrogen, Carlsbad, CA, U.S.A.) and cultured in Opti-MEM1 medium supplemented with 1% FBS. P19 cells were transfected with US2-Ascl1 to induce neuronal
29 30 31 32 33 34 35	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin (Invitrogen, Carlsbad, CA, U.S.A.) and cultured in Opti-MEM1 medium supplemented with 1% FBS. P19 cells were transfected with US2-Ascl1 to induce neuronal differentiation, as described elsewhere ⁴ . The Akt1/2 inhibitor (1 µM, Calbiochem, San
29 30 31 32 33 34 35 36	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin (Invitrogen, Carlsbad, CA, U.S.A.) and cultured in Opti-MEM1 medium supplemented with 1% FBS. P19 cells were transfected with US2-Ascl1 to induce neuronal differentiation, as described elsewhere ⁴ . The Akt1/2 inhibitor (1 µM, Calbiochem, San Diego, CA, U.S.A.) was mixed into the medium during DIV 0-5. To measure the
29 30 31 32 33 34 35 36 37	Experiment 1: The effect of an Akt inhibitor on neuronal differentiation and the abundance of GABAergic neuron-like cells from P19 cells For neuronal differentiation, P19 mouse embryonal carcinoma cells were further split 16 hours after transfection into dishes coated with 2 µg/ml mouse natural laminin (Invitrogen, Carlsbad, CA, U.S.A.) and cultured in Opti-MEM1 medium supplemented with 1% FBS. P19 cells were transfected with US2-Ascl1 to induce neuronal differentiation, as described elsewhere ⁴ . The Akt1/2 inhibitor (1 µM, Calbiochem, San Diego, CA, U.S.A.) was mixed into the medium during DIV 0-5. To measure the differentiation of GABAergic neuron-like cells from P19 cells, the P19 cells were

39	US2-Ascl1 (inducer of neuronal differentiation). To examine the expression of
40	GABAergic neuronal markers, immunocytochemistry was performed at DIV 5 to label
41	transfected cells (anti-GFP antibody; 1:2000, Molecular Probes, Eugene, OR, U.S.A.),
42	differentiated neurons (anti-Tuj1 antibody; 1:1000, Covance Inc., Princeton, NJ,
43	U.S.A.), and GABAergic interneurons (anti-GAD67 antibody; 1:500, EMD Millipore,
44	Billerica, MA, U.S.A.). We also evaluated the two major subtypes of GABAergic
45	interneurons using antibodies against calretinin (1:2000, EMD Millipore) and
46	parvalbumin (1:1500, Sigma-Aldrich Co., St. Louis, MO, U.S.A.). The cells were first
47	fixed in 4% paraformaldehyde (PFA) and washed with PBS containing 0.2% Triton
48	(PBT). Then, the cells were incubated overnight at 4 °C with primary antibodies diluted
49	in 5% goat serum and 0.5% Triton in PBS. After washing, the cells were incubated with
50	secondary antibodies at room temperature for 2 hours. Neuronal density was quantified
51	using ImageJ software (NIH, Bethesda, MD, U.S.A.). Microscopic images of stained
52	neurons were obtained using 20x and 40x objectives on a Nikon Eclipse 80i microscope
53	(Nikon, Tokyo, Japan) with Image-Pro Plus v7.0 software (Media Cybernetics,
54	Rockville, MD, U.S.A.). The percentages of differentiated neuron-like cells,
55	GABAergic neuron-like cells, and parvalbumin-positive neuron-like cells among all
56	P19-derived cells are shown as the percentages of GFP-positive cells that were also
57	positive for Tuj1, GAD67, or parvalbumin, respectively.

58	Regarding functional GABAAR expression, previous studies have reported that all
59	functional GABA _A Rs require a β subunit ⁵ and that the phosphorylation of the GABA _A R
60	β 2 subunit via Akt plays a crucial role in the efficacy of GABA _A R-mediated synaptic
61	inhibition both <i>in vitro</i> and <i>in vivo</i> ⁶ . P19 cells were first transfected with 1.25 μ g of
62	US2-puromycin (for selection of transfected cells) and 1.25 µg of US2-Ascl1.
63	Transfected cells were selected using 15 μ g/ml puromycin. Next, the cells were washed
64	twice with PBS and lysed with a commercial permeabilization buffer (ProteoJET TM
65	Membrane Protein Extraction Kit, K0321, Fermentas, Waltham, MA, U.S.A.)
66	containing Protease Inhibitor Cocktail tablets (Roche, Basel, Switzerland) and
67	Phosphatase Inhibitor Cocktail 1 (Sigma-Aldrich). Then, the mixture was incubated for
68	10 min at 4 °C with continuous rocking. Afterwards, the mixture was centrifuged at
69	16,000 g at 4 °C for 15 min. The supernatant, containing cytoplasmic proteins, was
70	carefully collected for subsequent analysis. The cell debris was placed on ice, and
71	commercial membrane protein extraction buffer was added. The debris was
72	homogenized, and the mixture was then shaken at 1400 rpm for 30 min at 4 °C.
73	Afterwards, the mixture was centrifuged at 16,000 g at 4 °C for 15 min. The supernatant
74	was collected, and the protein concentration was measured using the Bradford protein
75	assay (Bio-Rad Laboratories, Tokyo, Japan) via spectrometry at 620 nm. Protein
76	samples were separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis

77	(SDS-PAGE) on 10% polyacrylamide gels and transferred onto nitrocellulose
78	membranes (EMD Millipore). A mouse anti- β 2 GABA _A R subunit antibody (1:1000,
79	EMD Millipore) was used as the primary antibody, and a rabbit anti-Na $^+/K^+$ ATPase
80	antibody (1:1000, Cell Signaling Technology, Danvers, MA, U.S.A.) was used as the
81	loading control of membrane protein. Appropriate HRP-conjugated antibodies were
82	used as secondary antibodies. Bound antibody was detected using an enhanced
83	chemiluminescence kit (EMD Millipore) and blue sensitive universal film (Fujifilm,
84	Tokyo, Japan). Densitometric analysis was performed using NIH ImageJ software.
85	
86	Experiment 3: Examination of the numbers of GABAergic interneurons and of
87	GABAAR expression in the brains of female <i>Akt1^{-/-}</i> mice and female WT
87 88	GABAAR expression in the brains of female <i>Akt1^{-/-}</i> mice and female WT littermate controls.
87 88 89	GABA _A R expression in the brains of female <i>Akt1-^{/-}</i> mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity,
87 88 89 90	GABA _A R expression in the brains of female <i>Akt1-¹⁻</i> mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic
87 88 89 90 91	GABA _A R expression in the brains of female <i>Akt1-'-</i> mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic interneurons and the expression of GABA _A Rs in the target brain regions of female mice
87 88 89 90 91 92	GABA _A R expression in the brains of female <i>Akt1-¹⁻</i> mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic interneurons and the expression of GABA _A Rs in the target brain regions of female mice based on the results of Experiments 1 and 2.
87 88 89 90 91 92 93	GABA _A R expression in the brains of female <i>Akt1</i> - ^{<i>i</i>} - mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic interneurons and the expression of GABA _A Rs in the target brain regions of female mice based on the results of Experiments 1 and 2. <i>Experiment 3a: Examination of the expression of GABAergic interneurons in</i>
87 88 89 90 91 92 93 94	GABAAR expression in the brains of female Akt1- ^t mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic interneurons and the expression of GABAARs in the target brain regions of female mice based on the results of Experiments 1 and 2. <i>Experiment 3a: Examination of the expression of GABAergic interneurons in</i> the brains of female mice. Animals were perfused with 0.1% saline followed by 4%
 87 88 89 90 91 91 92 93 94 95 	GABAAR expression in the brains of female Akt1-/- mice and female WT littermate controls. Because GABA is mediates pre- and post-synaptic inhibition of neuronal activity, two sub-experiments were designed to examine the numbers of GABAergic interneurons and the expression of GABAARs in the target brain regions of female mice based on the results of Experiments 1 and 2. Experiment 3a: Examination of the expression of GABAergic interneurons in the brains of female mice. Animals were perfused with 0.1% saline followed by 4% PFA. The mouse brains were serially sectioned using a cryostat (HM-520, Thermo

96	Scientific, Waltham, MA, U.S.A.) at 40 µm per section. The sections were first
97	incubated in 3% H_2O_2 to block endogenous peroxidase activity. After washing with
98	0.02 M KPBS (pH = 7.0), the sections were blocked in 5% (w/v) skim milk for 1 hour
99	at room temperature. Then, the sections were incubated in 5% skim milk containing the
100	primary antibody overnight at 4 °C. Immunohistochemistry was conducted on brain
101	sections from female $Akt1^{-/-}$ mice (n = 6) and female WT littermates (n = 8) to detect
102	two major subtypes of GABAergic interneurons using antibodies against parvalbumin
103	(1:1500, Sigma-Aldrich) and calretinin (1:2000, EMD Millipore). After incubation in
104	the appropriate secondary antibodies, bound antibodies were detected using DAB
105	substrate (D5905, Sigma-Aldrich) and a Vectastain ABC kit (PK-6100, Vector
106	Laboratories, Burlingame, CA, U.S.A.). Neuronal density was measured in subregions
107	of the hippocampus (CA1 and CA3 areas) and the cortex (anterior cingulate cortex area
108	1 (aCg1), prelimbic cortex (PrL), infralimbic cortex (IL), primary motor cortex (M1),
109	and primary auditory cortex (Au1)) using NIH ImageJ software.
110	Experiment 3b: Examination of functional $GABA_AR$ expression in the target
111	brain areas of female mice. The expression of GABAARs was examined in the brains
112	of adult female $Akt1^{-/-}$ and WT mice (n = 5 each) using Western blotting. Brain regions
113	including the hippocampus, whole cortex, and striatum were rapidly dissected, frozen
114	in liquid nitrogen, and stored at -80 °C until protein extraction. Tissue samples were

115	homogenized in a commercial permeabilization buffer (ProteoJET TM Membrane
116	Protein Extraction Kit, K0321, Fermentas) containing Protease Inhibitor Cocktail
117	tablets (Roche) and Phosphatase Inhibitor Cocktail 1 (Sigma-Aldrich), and the mixture
118	was then incubated for 10 min at 4 °C with continuous rocking. Afterwards, the mixture
119	was centrifuged at 16,000 g at 4 °C for 15 min. The supernatant, containing cytoplasmic
120	proteins, was carefully collected for subsequent analysis. The cell debris was placed on
121	ice and treated with a commercial membrane protein extraction buffer. The debris was
122	homogenized, and the mixture was then shaken at 1400 rpm for 30 min at 4 °C.
123	Afterwards, the mixture was centrifuged at 16,000 g at 4 °C for 15 min. The supernatant
124	was collected, and the protein concentration was measured using the Bradford protein
125	assay (Bio-Rad Laboratories) via spectrometry at 620 nm. Equal amounts of protein
126	were separated via 10% sodium dodecyl sulfate/polyacrylamide gel electrophoresis
127	(SDS/PAGE) and transferred onto nitrocellulose membranes (EMD Millipore) in
128	transfer buffer containing 20% methanol. Following protein transfer, the membranes
129	were washed in Tris-buffered saline containing 0.1% Tween-20 (TBST) and blocked in
130	5% skim milk for 1 hour at room temperature. Similar to Experiment 1, the membranes
131	were incubated in 5% skim milk containing a mouse anti- β 2 GABA _A R subunit
132	antibody (1:1000, EMD Millipore) as the primary antibody and a rabbit anti-Na $^+/K^+$
133	ATPase antibody (1:1000, Cell Signaling Technology) as the loading control for

134	membrane protein. Appropriate HRP-conjugated antibodies were used as secondary
135	antibodies. Bound antibodies were detected using an enhanced chemiluminescence kit
136	(EMD Millipore) and blue sensitive universal film (Fujifilm). Densitometric analysis
137	was performed using NIH ImageJ software.
138	
139	Experiment 4: Examination of the morphological features of hippocampal
140	pyramidal neurons in female <i>Akt1^{-/-}</i> mice and female WT littermate controls.
141	Based on the findings from Experiments 2 and 3, the morphological properties of
142	hippocampal neurons were examined in adult female Akt1 ^{-/-} mice and WT littermate
143	controls. Because pyramidal neurons of the hippocampal CA1 region are critical for the
144	afferent and efferent connections of the hippocampus, a transgenic C57BL6-Tg (GFPm)
145	mouse line expressing green fluorescent protein (GFP) driven by the Thy1 promoter
146	was selected and used for morphometric analysis of GFP-labelled CA1 pyramidal
147	neurons in the hippocampus ⁷ . The expression patterns of GFP-labelled pyramidal
148	neurons in the Thy1-C57BL6-Tg (GFPm) transgenic mouse line have been reported
149	previously ⁷ , and this mouse line has been successfully used to analyse the
150	morphological alterations in pyramidal neurons of mutant mice. Additional female
151	mice generated from $Akt1^{+/-}$ breeding pairs in the C57BL6-Tg (GFPm) background
152	were used in this experiment. Adult mice were anaesthetized and transcardially
	Page 7, Chang, C.Y., et al.

153	perfused with PBS followed by 4% PFA in PBS. Fixed brains were sectioned coronally
154	using a vibratome. Serial coronal sections (150 μ m in thickness) were collected and
155	mounted on slides for immunofluorescence. Confocal stack images of GFP-labelled
156	neurons were obtained at intervals of 0.4 μ m using 20x, 40x-oil and 63x-oil objectives
157	on a Leica TCS SP5 confocal microscopy system (Leica, Wetzlar, Germany).
158	Neurolucida software (Microbrightfield Inc., Williston, VT, U.S.A.) was used to trace
159	and reconstruct the neurons in 3 dimensions. GFP labelling was nearly exclusively
160	restricted to the cell bodies and dendritic trees of CA1 pyramidal neurons of both Akt1-
161	^{/-} and WT mice. Using Neurolucida software, morphometric analyses of the GFP-
162	labelled pyramidal neurons (1.46 to 2.30 mm posterior to Bregma) of adult female Akt1 ⁻
163	$^{/-}$ (n = 13) and WT littermate controls (n = 11) were performed to detect the
164	neuromorphological differences between genotypes. The following 10 morphological
165	variables were selected for analysis based on previous studies ^{2,8} : (1) the number of
166	branches from the apical branches; (2) the number of apical tips; (3) the total length of
167	the apical tuft, which was calculated as the sum of the lengths of the apical stem and
168	the branches that formed the tuft; (4) the soma size (obtained by outlining the cell somas
169	and automatically calculating the pixel areas in μ m ²); (5) the number of primary basal
170	dendrites (excluding apical dendrites and axons); (6) the total length of the primary
171	basal dendrites; (7) the number of branches from the basal branches; (8) the number of

basal tips; (9) the total length of the basal dendrites; and (10) basal dendritic complexitybased on Sholl analysis.

174

175 Experiment 5: Recording of neuronal oscillations in the hippocampus of female 176 Akt1^{-/-} mice and their WT littermate controls.

Stereotaxic brain surgery and histology: The mice were initially anaesthetized 177 178 with a small dose of isoflurane (5%) administered in an induction chamber. The mice 179 were then placed in a stereotaxic frame such that the nose was in the anaesthesia head-180 holder supplying isoflurane in O₂ (at ~0.5 to 1 L/min). The initial isoflurane levels after 181 induction of anaesthesia were as high as 2%, and the isoflurane level was lowered over 182 the course of surgery to $\sim 1\%$ when the animal reached a stable plane of anaesthesia. An adequate depth of anaesthesia was verified based on the absence of the toe-pinch reflex. 183 Then, the scalp was shaved and cleaned with Betadine and 70% ethanol before incision. 184 185 Using a fresh scalpel blade, a single incision through the skin was made. A single burrhole in the skull at the target site (CA1 area: AP: -1.8 mm; ML: 1.5 mm) was produced 186 using a drill. The dura was opened slightly, and the electrode array was implanted into 187 the brain tissue at the desired angle and depth (DV: 1.5 mm) by slowly lowering the 188 device. A stainless steel screw driven into the skull above the cerebellum, served as 189 190 ground. After the completion of implantation, the animal was allowed to fully recover in a clean cage supplied with a heating blanket. Each mouse received an analgesic agent 191 Page 9, Chang, C.Y., et al.

192	(e.g., ibuprofen) for a few days after surgery. At least 7 days after recovery, neural
193	oscillations were recorded in female $Akt1^{-/-}$ mice and WT littermate controls (n = 5 each)
194	anesthetized using isoflurane (1%). One day after completion of the neural recordings,
195	electrode placement was confirmed post-mortem after perfusion and fixation with 4%
196	PFA and 1% potassium ferrocyanide, followed by Prussian blue staining in $40-\mu m$
197	coronal sections.
198	

199 Experiment 6: Examination of hippocampus-related cognitive function in female
200 *Akt1^{-/-}* mice and female WT littermate controls.

Based on the findings from Experiments 3-5, hippocampus-related cognitive
functions were evaluated using the Y-maze (Experiment 6a) and Morris water maze
tasks (Experiment 6b).

Experiment 6a: The Y-maze test. Spatial memory retention was examined in naïve female adult *Akt1*-/- mice and WT littermates (n = 8 each) using a polypropylene Y-maze (with three equally spaced arms (50 cm long, 12 cm wide, 16 cm height)) surrounded by visual cues. The Y-maze test consisted of a 10-min training trial and a 5-min retention trial separated by a one-hour inter-trial interval to assess spatial recognition memory. In the training trial, each mouse was allowed to explore only two arms (the starting arm and another arm) of the maze, with the third arm (the novel arm) blocked.

211	In the retention trial, each mouse was free to explore all three arms. The distance
212	travelled and time spent in each arm (excluding the central zone of the Y) were recorded
213	and analysed using an EthoVision tracking system (Noldus Information Technology,
214	Wageningen, Netherlands). Two indexes were calculated for the retention trial: (1) the
215	percentage (%) of time spent in the novel arm = time spent in the novel arm / total time
216	spent in any arm; and (2) the percentage (%) of distance travelled in the novel arm =
217	distance travelled in the novel arm / total distance travelled in any arm.
218	Experiment 6b: The Morris water maze test. Spatial learning and memory
219	abilities were evaluated using a standard spatial version of the Morris water maze task.
220	A circular pool (diameter, 100 cm) filled with water that had been clouded with nontoxic
221	white paint and that was held at 22 ± 1 °C was placed in the centre of the testing room
222	and surrounded by several visual cues. A platform (12×12 cm ²) was hidden 1 cm
223	beneath the surface of the water. The swim paths of each subject were recorded using
224	an EthoVision tracking system (Noldus Information Technology). Each mouse
225	performed 6 trials per day with inter-trial intervals of 11-15 minutes for 8 consecutive
226	acquisition days. On each daily trial, each mouse started from a quadrant that was
227	pseudorandomly selected from the three quadrants that did not contain the platform.
228	Mice that failed to locate the platform within 1 min were gently guided to the platform,
229	where they remained for 30 sec before being returned to their cages. The escape latency

230	(sec), measured as the time required to reach the hidden platform, and the path length			
231	(cm) were recorded. After 8 days of training, the platform was removed from the pool,			
232	and each subject was returned to the pool lacking a platform for a 1-min probe test on			
233	Day 9. The time spent swimming and the swimming distance in each quadrant were			
234	recorded and used as an index of reference memory ability. One day after the probe test,			
235	each mouse was retrained in the reversal version of the Morris water maze task, in			
236	which the hidden platform was relocated to the quadrant opposite the original target			
237	quadrant for 5 consecutive days to test reversal learning.			
238				
239	Refer	ences:		
240	1	Lai, W. S. et al. Akt1 deficiency affects neuronal morphology and predisposes		
241		to abnormalities in prefrontal cortex functioning. Proceedings of the National		
242		Academy of Sciences of the United States of America 103, 16906-16911,		
243		doi:10.1073/pnas.0604994103 (2006).		
244	2	Chen, Y. W. & Lai, W. S. Behavioral phenotyping of v-akt murine thymoma		
245		viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse		
246		inhibition deficit in females that can be partially alleviated by glycogen		
247		synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience 174, 178-		
248		189, doi:10.1016/j.neuroscience.2010.09.056 (2011).		

249	3	Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F. & Birnbaum, M. J.
250		Akt1/PKBalpha is required for normal growth but dispensable for
251		maintenance of glucose homeostasis in mice. J Biol Chem 276, 38349-38352,
252		doi:10.1074/jbc.C100462200 (2001).
253	4	Lin, Y. T. et al. YAP regulates neuronal differentiation through Sonic
254		hedgehog signaling pathway. Exp Cell Res 318, 1877-1888,
255		doi:10.1016/j.yexcr.2012.05.005 (2012).
256	5	Wan, Q. et al. Recruitment of functional GABA(A) receptors to postsynaptic
257		domains by insulin. Nature 388, 686-690, doi:10.1038/41792 (1997).
258	6	Wang, Q. et al. Control of synaptic strength, a novel function of Akt. Neuron
259		38 , 915-928 (2003).
260	7	Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing
261		multiple spectral variants of GFP. Neuron 28, 41-51 (2000).
262	8	Pei, J. C., Liu, C. M. & Lai, W. S. Distinct phenotypes of new transmembrane-
263		domain neuregulin 1 mutant mice and the rescue effects of valproate on the
264		observed schizophrenia-related cognitive deficits. Front Behav Neurosci 8,
265		126, doi:10.3389/fnbeh.2014.00126 (2014).
266		

267	Figure	legends	for Su	pplement	tarv Figu	ires
					···- /	

268	Figure S1. Representative images for Figure 1a. The effect of Akt1/2 inhibitor
269	application on neuronal differentiation from P19 cells was examined using
270	immunocytochemistry. P19 cells were transfected with US2 (control plasmid for
271	transfection) and Ascl1 (inducer of neuronal differentiation). During neuronal
272	differentiation, P19 cells were treated with the vehicle control (Vehicle) or the Akt
273	inhibitor (Akt1/2 inhibitor). At DIV 5, P19 cells were stained for Tuj1 (neuronal
274	marker, red) and GFP (transfection marker, green).
275	
276	Figure S2. Representative images for Figure 1b. The effect of Akt1/2 inhibitor
277	application on the differentiation of GABAergic neurons from P19 cells was
278	examined using immunocytochemistry. After treatment with an Akt1/2 inhibitor
279	during neuronal differentiation, P19 cells were stained for GAD67 (GABAergic
280	neuronal marker, red) and GFP (transfection marker, green) at DIV 5.
281	
282	Figure S3. Representative images for Figure 1c. The effect of Akt1/2 inhibitor
283	application on the differentiation of parvalbumin-positive neurons from P19 cells
284	was examined using immunocytochemistry. After treatment with an Akt1/2
285	inhibitor during neuronal differentiation, P19 cells were stained for parvalbumin (PV;

red) and GFP (transfection marker, green) at DIV 5.

287

288

289 Supplementary Figures S1, S2, & S3

Vehicle AKT inhibitor

Ascl1

GFP

Scale bar: 30µm

Ascl1

Vehicle

GFP

PV

GFP

+

PV

AKT inhibitor

Scale bar: 30µm