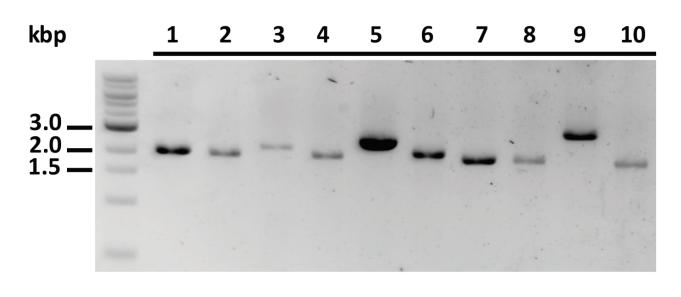

1000 bp

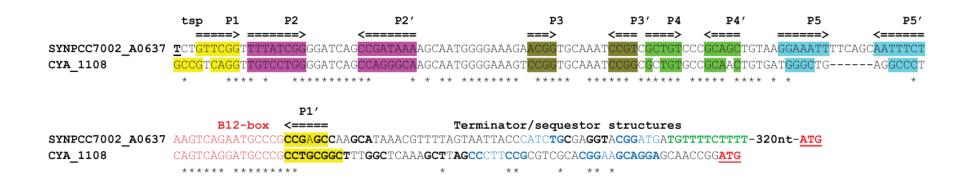
Figure S1. Scheme showing the deletion of the individual *btu* genes (*btuF* is the example shown) from *Synechococcus* sp. strain PCC 7002. A. Primers 108 and 109 were used to amplify a 659 bp upstream flanking region and primers 110 and 111 were used to amplify a 683 bp downstream flanking region of the putative *btuF* gene. The *ermC* erythromycin resistance cassette was ligated in a single ligation reaction to the upstream and downstream flanking regions after digestion. The $\Delta btuF::ermC$ was amplified for transformation with primers 108 and 109 using the ligation mixture as template. B. The $\Delta btuF::ermC$ construct contains upstream and downstream homologous regions of the *btuF* locus of *Synechococcus* sp. strain PCC 7002. The *ermC* erythromycin cassette was fused to the homologous flanking regions via the introduced Ncol and BamHI sites. Primers 205 and 206 were used for screening transformants. *Synechococcus* sp. strain PCC 7002 is naturally transformable and can insert recombinant DNA via homologous recombination. The scheme used to construct the $\Delta btuF::ermC$ mutant was similarly used to delete *btuD*, *btuB*, *btuC* and SYNPCC7002_A0636, the putative 3',5'-cyclic-nucleotide phosphodiesterase gene.



В

Figure S2. A. Scheme showing deletion of the *metH* gene by replacing the *ermC* gene of the original mutant strain with the *aacC1* gene encoding gentamicin resistance. **B.** Agarose gel electrophoresis of amplicons from the indicated strains. Deletion of the native cobalamin-dependent methionine synthase gene (*metH*) in the AAP005 *ΔbtuX*::*ermC* mutants was confirmed by PCR screening. A1648: *btuD*, putative ATPase subunit of ABC transporter for cobalamin; A0634: *btuC*, permease subunit of ABC transporter for cobalamin; A0635: *btuF*, periplasmic binding protein for ABC transporter for cobalamin; A0636: 3',5'-cyclic-nucleotide phosphodiesterase (CpdA); and A0637: *btuB*, TonB-dependent cobalamin outer membrane transporter for cobalamin uptake.

Figure S3


- 1. WT 7002 A1648
- 2. 7002 ∆A1648::Em^R
- 3. WT 7002 A0634
- 4. 7002 ∆A0634::Em^R
- 5. WT 7002 A0635
- 6. 7002 ∆A0635::Em^R
- 7. WT 7002 A0636
- 8. 7002 ∆A0636::Em^R
- 9. WT 7002 A0637

10. 7002 ∆A0637::Em^R

Figure S3. Agarose gel electrophoresis showing PCR amplicons confirming the construction of the deletion mutant strains indicated. PCR analyses using primers flanking the indicated genes show complete segregation of wild-type and mutant alleles in all cases. Identities of the amplicons were also verified by DNA sequencing. The *btu* genes from the wild type and the AAP005 $\Delta btuX::ermC$ deletion mutants were amplified using the same primer pairs. A1648: *btuD* predicted ABC transporter ATPase component; A0634: *btuC*, permease subunit of cobalamin ABC transporter; A0635: *btuF*, periplasmic cobalamin binding protein of ABC transporter; A0636: 3',5'-cyclic-nucleotide phosphodiesterase (CpdA); and A0637: TonB-dependent outer membrane transporter for cobalamin.

Figure S4

The *btuB* gene upstream region in *Synechococcus* sp. PCC 7002 (SYNPCC7002_A0637) and *Synechococcus* sp. JA-3-3A (CYA_1108)

Figure S4. Alignment of the *btuB* gene upstream regions from *Synechococcus* sp. strain PCC 7002 (SYNPCC7002_A0637) and *Synechococcus* sp. strain JA-3-3A (CYA_1108) for identification of conserved RNA secondary structures of the B₁₂ riboswitch. The arrows in the upper line show the complementary stems of the RNA secondary structure. Base-paired positions are highlighted in matching colors. Conserved B₁₂-box elements are in red. Secondary structures of putative terminators/ribosome sequesters are shown in blue, and poly-T tracts in terminators are shown in green. Start codons are shown in red and are underlined.

Table S1

Table S1. Primers utilized for amplifying antibiotic markers and *metH* locus.

Name	Sequence
ermC_F	5'-ATA TAA <u>CCA TGG</u> TAA AGA GGG TTA TAA TGA ACG AG-3' Ncol
ermC_R	5'-GTA CCC <u>GGA TCC</u> TCT AGA G-3' BamHI
aacC1_F	5'-AAA AAA <u>GAA TTC</u> CTA GAC CGA ACG CAG CGG T-3' EcoRI
aacC1_R	5'-AAA AAA <u>GGA TCC</u> CGT CGG CCG GGA AGC CG-3' BamHI
Nest_dmetH_F	5'-ggg aac tgc gca ata aca at-3'
Nest_dmetH_R	5'-gcc aga ttg cca tcg ata at-3'

Table S2

A. Primers to amplify upstream and downstream flanking sites for individual *btu* gene knock-out construction

ID	Name	Sequence
100	A0637AF	5'-GCG ATC GCC TGG ATT ATT TA-3'
101	A0637AR	5'-ATG ACG <u>CCA TGG</u> AAG AAT ATT TTG GGC TAA TTT TTA ATG-3' Ncol
102	A0637BF	5'-TCC GTT <u>GGA TCC</u> CTC CGT TTC GTC CCC TAT T-3' BamHI
103	A0637BR	5'-TGT ATT CCA GGT GGA CGT GA-3'
104	A0636AF	5'-CTA TTT TCC GGG GTT TAG CAA T-3'
105	A0636AR	5'-TGA GAA <u>CCA TGG</u> AAA ATC GTG G-3'
106	A0636BF	5'-TGC GTA <u>GGA TCC</u> AAA ACG ATG CGT TTC CCC TTC-3' BamHI
107	A0636BR	5'-CTA ACA CCA CCG TTA ACC CC-3'
108	A0635AF	5'-AAC CAG ATC GGC TGA TTT TGA-3'
109	A0635AR	5'-GGA AAC <u>CCA TGG</u> TTT TTT CTC CTA CGC AAA CCA C-3' Ncol
110	A0635BF	5'-AAA AAA <u>GGA TCC</u> CCG TGA AAA TTC CCT ACA-3' BamHI
111	A0635BR	5'-CTG AAA AAA AGC CAG CAG TCC-3'
112	A0634AF	5'-CAA TAC CAG CGC CTT AGA TTC-3'
113	A0634AR	5'-AAA AAA <u>CCA TGG</u> TTT TCA CGG GGA ATC TTG CAA G-3' Ncol
114	A0634BF	5'-TCG TTA <u>GGA TCC</u> CAC TAA AAA TCC AGA AAT ATT CC-3' BamHI
115	A0634BR	5'-CTA TCG AGA TTA ATT GTT TTG GC-3'
116	A1648AF	5'-CCG ATG GTG ACC TGA ATG TTA G-3'
117	A1648AR	5'-TAC CGT <u>CCA TGG</u> CGA TCG CCT CGA TTA ATG GAG-3'
118	A1648BF	5'-GGG TTT <u>GGA TCC</u> GTA CAG ACC CCC TGG CCA TT-3' BamHI
119	A1648BR	5'-GGT GCG GGA ATT TAA TTT AGC-3'
120	PbtuB_F	5'-AAA AAA <u>CCG CGG</u> ATC TAT TTA CAT TGG GGG CGA T-3' Sacili
121	PbtuB_R	5'-AAA AAA <u>CCA TGG</u> AAG AAT ATT TTG GGC TA-3' Ncol

Table S2. A. Primers to amplify 600-1000 bp of upstream and downstream flanking regions for individual btu gene knock-out construction. Four primers were designed for each construct; two primers for the upstream flank (denoted by the letter A) and two primers for the downstream flank (denoted by the letter B). B. Screening primers for sequencing the individual btu deletion constructs using colony PCR. Primers were designed in the upstream and downstream flanking regions of the individual *btu* genes.

B. Screening primers for sequencing the individual btu deletion constructs using colony PCR

_			
	ID	Name	Sequence
	201	A0637F	5'-GAC CAA CCA CGC CCA GAT TA-3'
	202	A0637R	5'-TCG CCA CCG GAG AAT TTT GA-3'
	203	A0636F	5'-ATT TAG TGC CGG AAC TGG GG-3'
	204	A0636R	5'-GGC ATC GAG GCG ATA GTT CA-3'
	205	A0635F	5'-CGG CGG TGC AAC AGT TTA AA-3'
	206	A0635R	5'-ACT GTT CCC GCT GGA TTT CC-3'
	207	A0634F	5'-TTC CTT GGG GTT AAC GGT GG-3'
	208	A0634R	5'-TCG GTG GAA ACT GGA ATC GA-3'
	209	A1648F	5'-GCC GAT GGT GAC CTG AAT GT-3'