

Figure S1

73109_MetE CYA_0167	MTMFQTTTLGYARMGKRRELKKALETFWGGTSSADDLLALRQDLEVKTWQAQLTAGIDRI -MAIETQTLGYARMGKRRELKKALEAFWGGTLEAEALLATLQDLESQAWRTQRQANLDHI ::* **********************************
73109_MetE CYA_0167	AVGDQTLYDHVLDWTVRLGLIPRRFQGLSGLDRYFAMARGRDALPALEMTKWFDTNYHYL AVGDQTLYDHVLDWATWLGLIPSRFQSLSGLERYFAMARGQEGLPALEMTKWFDTNYHYL ***********************************
73109_MetE CYA_0167	VPEIEDKMQPLGNFGEFLAMVQRSQAVLGDRAVPVVLSPVTLLALSRHNGDLMAWLDQLL VPEIEADAIPQAHFDDFLATVRRAQGILGNRTSPVLLSPVTLLALSQRSGELRGDLEKLL ****
73109_MetE CYA_0167	PLYVDLLGQLKALGVKEVQLHEPILVTSQAADLKTAVQNTYHQLASVGLPIQLVTYFDDL PLYRELLQELQRLGIREVQVHEPILVTSEGKSLQEAVEQTYRWLASVGIPLHLVTYFDDL *** :** :*: **::***********:*: **::*** ********
73109_MetE CYA_0167	GVNYGWVTQLPVAGISLDFTRGHNLDLLISQGFPADKILGAGVVDGRNIWQIHPDVILAM GETYPWAVELPVAGLSLDFTRGHNLELVRAHGFPADKILGAGVVDGRNIWQIQPKAVLAT * .* *:*****:************************
73109_MetE CYA_0167	LKKLQAIAPNLRVQPSASLQFVPHDATLETQLSEPLRNVLSFAEQKLVEVVFLARMLNSE LQELQALAPNLRVQPSCSLQFVPHDAALETHLPEPLRNVLSFAEQKLAEVVLLARTLNGE *::***:******************************
73109_MetE CYA_0167	DTAAQQAEMQHQWQAFEQFNPPNPDVRQALASLTVEDFERSLSYSLRLDKQVKLPHLPTT DTAAQQQELEQQWQAFQDFNPPNSTVRQALANLTAQDFQRSLPYEQRIGRQVKLPPLPTT ***** *::****** *********************
73109_MetE CYA_0167	TIGSFPQTKEVRQLRVKYKKGDISQAEYQRNIDTNIAECIKIQEEVGLDVLVHGEFERTD TIGSFPQTPEVRQWRVKYKKGEISQAEYEAAIDAEIAKCIRIQEEIGLDVLVHGEFERTD ****** *** **************************
73109_MetE CYA_0167	MVEYFGQQLEGFAFTVNGWVQSYGSRCVRPPIIYGDVSRPQPMTVREFQVAQALTQKPVK MVEYFAQQLQGFAFTEHGWVQSYGSRCVRPPILYGDVSRPRPMTVREFKVAQSLTQKPVK ****.***:**** .************************
73109_MetE CYA_0167	GMLTAPITILNWSFSRADISRRDQAFQIALALRQEVADLEAAGAQIIQVDEPALREGLPL GMLTGPVTMLNWSFPRVDVSRREQALQIALALRAEVADLEAAGAAMVQVDEPALREGLPL ****.*:*:***** *.*:********************
73109_MetE CYA_0167	KVQRWSDYLSWAVDAFRLATAIAQPQTQIHTHMCYCEFGDIIQDIERLDADVISIENSRS KKERWPEYLSWAVEAFRLTTAGAKPETQIHTHMCYSEFGDIIEHIERLDADVLSIENSRS * :** :****** *:**********************
73109_MetE CYA_0167	GNRTLQEVTEGGYSHQIGNGVYDIHSPVVPTEKQLVQQLKAGLANLPTQQIWVNPDCGLK SNKTLLQIAQAGYRHQVGNGVYDVHSPAVPDTEQILRQLRLGVAHLPLEQTWVNPDCGLK .*:** ::::.** **:**********************
73109_MetE	TRRWEEVVPSLKHMVAATQKLREEIDATTR

Figure S1. Sequence comparison of MetE from Synechococcus sp. strain PCC 73109 and Synechococcus sp. strain JA-3-3Ab. The gene encoding cobalaminindependent methionine synthase (73109_MetE) in Synechococcus sp. strain PCC 73109 was identified by its high amino acid sequence identity (73%) and similarity (85%) to the *metE-2* gene product of *Synechococcus* sp. strain JA-3-3Ab (CyanoBase: CYA 0167).

B

Figure S2. A. Scheme showing the construction of the $\Delta metH::ermC$ mutant by homologous recombination using primers in Table S1. Flanking regions are approximately 1.1 kb in length. The erythromycin (ermC) antibiotic resistance cassette was ligated into appropriate restriction sites at the ends of each flanking region (see further details in Materials and Methods). The resulting amplicon was used to transform strain AAP001 to generate strain AAP002. **B.** Electrophoresis of PCR amplicons using primers Nest_metHF and Nest_metHR (**Table S1**) shows the full segregation of the $\Delta metH::ermC$ allele in strain AAP002 (lane 2) grown in the absence of cobalamin. The same PCR primers were used to amplify the native metH gene in a WT strain (lane 1). The identities of amplicons were also verified by DNA sequencing.

Table S1

Table S1. Primers utilized in this study.

Name	Sequence
metEF	5'-AGG ACA ATA C <u>CA TAT G</u> AC GAT GTT TCA AAC AAC GAC-3' Ndel
metER	5'-CGA CTA CCC GTT GAT GTT T <u>GG ATC C</u> GC CGC GA-3' BamHI
dmetHA_F	5'-CCA ACG GGA CGT ACA TTA CT-3'
dmetHA_R	5'-AAG GCA <u>GAA TTC</u> ATG GAG AAA TGT TTC GGC GG-3' EcoRI
dmetHB_F	5'-ATA CTT <u>GGA TCC</u> TTG TCA AGC AAA GCC AAT TAT TT-3'
dmetHB_R	5'- CCC AAA CGT ATA AAC ATC TT TG-3'
Nest_metHF	5'-GGG AAC TGC GCA ATA ACA AT-3'
Nest_metHR	5'-GCC AGA TTG CCA TCG ATA AT-3'
PmetE73109F	5'-AAA AAA <u>CCG CGG</u> TAG CAC TGA GAA TAT GAA TTC AAT G -3' SacII
PmetE73109R	5'-AAAAAA <u>CCA TGG</u> TAT GTA TTG TCC TAA ATG AAT TTG A -3' Ncol
cpcBA6803_fusF	5'-GGT CAG GAT ATC GGT CAA GTA T-3'
cpcBA6803_fusR	5'-CGC CTA GGC T <u>GC TAG C</u> CT TTT GCA ATC CCA CAG TTA AC-3' Nhel
metE73109_fusF	5'-GTT TGA AAA AT <u>G CTA GC</u> C TTT AGC ACT GAG AAT ATG AAT TC-3' Nhel
metE73109_fusR	5'-AAAAAA <u>CCA TGG</u> TAT GTA TTG TCC TAA ATG AAT TTG A-3' Ncol
psbA26803_F	5'-GTT TAC <u>GAA TTC</u> AAA AAA CGA CAA TTA CAA GAA AGT A-3' EcoRi
psbA26803_R	5'-TCG TGG <u>CCA TGG</u> GGT TAT AAT TCC TTA TGT AT-3' Ncol
RT_metE_F	5'-GAT GGC TTG GTT GGA TCA GT-3'
RT_metE_R	5'-AGC ACA TTC CGT AAC GGT TC-3'
RT_16S_F	5'-TGG TCA TGC AAG TCT GCT GT-3'
RT_16S_R	5'-CCA ACA TCT CAC GAC ACG AG-3'