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Expert system support using Bayesian belief
networks in the diagnosis of fine needle aspiration
biopsy specimens of the breast

P W Hamilton, N Anderson, P H Bartels, D Thompson

Abstract
Aim-To develop an expert system model
for the diagnosis of fine needle aspiration
cytology (FNAC) ofthe breast.
Methods-Knowledge and uncertainty
were represented in the form of a
Bayesian belief network which permitted
the combination of diagnostic evidence in
a cumulative manner and provided a
final probability for the possible diagnos-
tic outcomes. The network comprised 10
cytological features (evidence nodes),
each independently linked to the diagno-
sis (decision node) by a conditional prob-
ability matrix. The system was designed
to be interactive in that the cytopatholo-
gist entered evidence into the network in
the form of likelihood ratios for the out-
comes at each evidence node.
Results-The efficiency of the network
was tested on a series of 40 breast FNAC
specimens. The highest diagnostic proba-
bility provided by the network agreed
with the cytopathologists' diagnosis in
100% of cases for the assessment of dis-
crete, benign, and malignant aspirates.
Atypical probably benign cases were
given probabilities in favour of a benign
diagnosis. Suspicious cases tended to
have similar probabilities for both diag-
nostic outcomes and so, correctly, could
not be assigned as benign or malignant. A
closer examination of cumulative belief
graphs for the diagnostic sequence of
each case provided insight into the diag-
nostic process, and quantitative data
which improved the identification of sus-
picious cases.
Conclusion-The further development of
such a system will have three important
roles in breast cytodiagnosis: (1) to aid
the cytologist in making a more consis-
tent and objective diagnosis; (2) to pro-
vide a teaching tool on breast cytological
diagnosis for the non-expert; and (3) it is
the first stage in the development of a
system capable of automated diagnosis
through the use ofexpert system machine
vision.

(3 Clin Pathol 1994;47:329-336)

Fine needle aspiration cytology (FNAC) has
been established as a rapid, safe, and cost
effective method of diagnosis in breast dis-
ease. The success of the technique relies
strongly on the ability of the cytologist to

identify and characterise cytological changes
in the prepared aspirate. This presents a
number of problems. Diagnosis is largely
based on visual criteria which are subjective
and can be misleading in certain instances.
The number of visual clues which need to be
assessed and the number of options available
impose difficulties for assimilating all the rele-
vant diagnostic information in a consistent
and reproducible manner. This is also true of
other areas of histological and cytological
diagnosis. 1

Expert systems are computer programs that
are designed to store, access, and process
knowledge about a particular domain.2 They
can therefore provide the perfect framework
for storing cytological diagnostic knowledge in
a logical, consistent, and reproducible manner
and have substantial potential in providing
cytopathologists with a means of making a
more accurate and consistent diagnosis.

Decision making in cytopathology (as in
other domains) involves the consideration and
combination of numerous pieces of evidence.
When the diagnostic evidence is clear-cut, the
uncertainty involved in reaching a decision is
low. However, most of the knowledge in diag-
nostic cytopathology is in the form of images,
concepts, and descriptive terminology and
because of this, uncertainty in the decisions
leading to diagnosis and in the final diagnosis is
inherent. It is for this very reason that experts
are required to make difficult diagnostic deci-
sions. The development of computer-based
expert systems requires careful consideration
as to how uncertainty is handled and how
knowledge is to be represented within the
design3 4

Bayesian belief networks provide a power-
ful means of representing knowledge: evi-
dence is combined in a cumulative manner to
provide a measure of certainty in the final
decision. Their structure is comprised of
NODES connected by LINKS (fig 1A),
where the nodes constitute probabilistic vari-
ables-nuclear pleomorphism-with possible
outcomes-none, mild, moderate, severe-
and links represent the relation between two
nodes and are quantified by a conditional
probability (CP) matrix. The CP matrix
expresses the relation between the possible
outcomes of the descendent child node with
the outcomes of the parent node. When the
descendent node represents evidence, such as a
cytological feature, and the parent node is the
diagnosis as in the current study, the CP
matrix expresses the probability of finding a
feature outcome (such as pleomorphism:
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update of all the prior probabilities and beliefs
at the other evidence nodes (fig 2). At the
decision node, accumulating evidence will
result in changes in the outcome belief until
the belief in a particular outcome exceeds a
defined threshold, sufficient to constitute a
diagnostic decision.
A detailed description of the algorithmic

mechanism of network initialisation and belief
propagation in Bayesian belief networks is
given by Bartels, Thompson, and Weber.4
Bayesian belief networks have been applied in
the diagnosis of prostate lesions56 and their
theoretical application in quantitative histo-
pathology has been extensively researched by
Bartels et al.7

Figure 1 (A) Diagram of basic Bayesian belief network unit comprising a decision node
(DIAGNOSIS) linked to an evidence node (PLEOMORPHISM) via a conditional
probability (CP) matrix. (B) This shows an enlargement of the CP matrix link which
conveys the probability ofpleomorphism outcomes being present given the diagnosis.

Table 1 List of diagnostic
features and their possible
outcomes used in
construction ofBayesian
belief network

Bare nuclei:
numerous, moderate,
few/absent

Cellularity:
low, moderate, high

Cohesion:
strong, moderate, poor

Pleomorphism:
none, mild, moderate,
severe

Cell arrangement:
even/flat, irregular/overlap

Nuclear size:
small, medium, large

Nucleoli:
none, single, multiple

Intracytoplasmic lumina:
present, absent

Aprocrine cells:
present, absent

Mucinous background:
present, absent

mild) given a diagnostic outcome (such as

benign) (fig iB).
The belief in the various outcomes is also

stored at each node. This is expressed as a

probability. For the decision node, this is
defined by the user. For the evidence nodes,
the outcome probabilities are defined by a

network initialisation process and are largely
dependent on the values held in the CP
matrices.'
The system reported here is designed to be

interactive in that the cytopathologist exam-

ines the cytological features of a case and
enters evidence into the network in the form
of relative likelihood ratios. These convey the
likelihood that each of the possible feature
outcomes are present in the sample under
investigation (see table 5 for examples).
Values of zero are not used as this presents
computational problems. The value for each
outcome is an independent estimate and the
total does not have to equal 100. They there-
fore define in numerical form the subjective
impression of the cytologist.
When evidence is submitted to an evidence

node, the belief in the outcomes of that node
are updated. This belief is then propagated, in
our very simple network, upwards to the diag-
nostic decision node, where the belief in the
diagnostic outcomes (benign and malignant)
are updated. This update, in turn, triggers an

Evidence

Figure 2 Propagation of belief in a Bayesian belief network. * = nodes, = links.
Arrows pointing up: update of likelihoods and beliefs. Arrows pointing down: update of
prior probabilities and beliefs. This illustration shows a second level of descendent nodes at
which the evidence was entered. The network in the current study only possessed a single
layer of evidence nodes.

Methods
BAYESIAN BELIEF NETWORK DESIGN
The Bayesian belief network was constructed
using software developed in The Optical
Sciences Centre, University of Arizona, USA.
The program was written in C and has a
graphical interface which permits the inter-
active definition of nodes, links, and CP
matrices. Algorithmic implementation fol-
lowed that designed by Morawski89 from the
concepts originally developed by Pearl.'0
A set of 10 diagnostic clues were defined

which provide evidence in the diagnosis of
breast FNAC. These are listed in table 1
together with their possible outcomes. Note
that these features were chosen for the assess-
ment of aspirates stained using Hema-Gurr
(BDH Chemicals), the method used in our
laboratory where a rapid diagnostic service is
provided at outpatient clinics.
The belief network topology was in the

form of an open tree with a single level of evi-
dence nodes (fig 3). This simple design con-
sisted of a single decision node representing
the DIAGNOSIS with its possible outcomes
(BENIGN and MALIGNANT), and the 10
diagnostic features as evidence nodes directly
linked to the diagnostic decision node.
Conditional probability matrices relating each
of the diagnostic clues and their outcomes to
diagnosis (benign, malignant) were defined by
a cytopathologist (NA) (table 2).

CASES
The performance of the belief network was
tested using a series of 40 cases of breast
aspirates retrieved from file at the Royal
Victoria Hospital, Belfast, all of which had
confirmatory tissue biopsy diagnoses. Based
on the cytology report, these comprised 16
benign, 11 malignant, eight suspicious, and
five atypical probably benign cases using the
criteria of the NHS Breast Screening
Programme" (table 3). Each case was
assessed cytologically for all of the features
listed in table 1 and relative likelihood ratios
recorded and entered as evidence into each
node of the network. After each piece of evi-
dence was submitted the calculated probabili-
ties for the diagnostic outcomes were
recorded. After all the evidence nodes were
sampled for a single case, the final diagnostic
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Figure 3 Topology of
Bayesian belief network for
the diagnosis of breast
FNAC. The decision node
is DIAGNOSIS and the
evidence nodes are the
cytologicalfeatures. The
outcomes for each node are
also shown.

Diagnosis:
Benign Malignant

Bare nuclei Mucinous background
Numerous Moderate Few/ A Present Absent

Celularity Apocrine cells
LowModerate High Present Absent

CohesionderateHig Intracytoplasmic lumina
Strong Moderate Poor Pleomorphism S umNudoleo Present Absent

None Mild Moderate Severe SalMcimLre None Single Multiple
Coll armngement

Even/lfat Irregular overlap

probability was compared with the original
diagnosis given by the cytopathologist.

Table 2 Conditional probability matrices relating
probability offindingfeature outcome, given the diagnosis
(these sum to 1 0 in the horizontal)

Bare nuclei
Numerous Moderate

Benign 0-55 0-40
Malignant 0-01 0-10

Cellulaity
Low Moderate

Benign 0-60 0-30
Malignant 0-05 0-10

Cohesion
Strong Moderate

Benign 0-70 0-25
Malignant 0-10 0-40

Pleomorphism
None Mild

Benign 0-50 0-40
Malignant 0-10 0-20

Fewlabsent
0-05
0-89

High
0-10
0-85

Poor
0-05
0-50

Moderate Severe
0-09 0-01
0-30 0-40

Cell arrangement
Even/flat Irregularloverlap

Benign 0-90 0-10
Malignant 0-05 0-95

Nuclear size
Small Medium

Benign 0-89 0-10
Malignant 0-20 0-40

Nucleoli
None Single

Benign 0-74 0-25
Malignant 0-10 0-50

Large
0-01
0-40

Mulnple
0-01
0-40

Intracytoplasmic lumina
Present Absent

Benign 0-01 0-99
Malignant 0-50 0-50

Apocrine cells
Present Absent

Benign 0-10 0-90
Malignant 0-01 0-99

Mucinous background
Present Absent

Benign 0-01 0-99
Malignant 0-05 0-95

Table 3 Diagnostic categories and summary of diagnostic
criteria used in this study and defined by NHS Breast
Screening Programme"

Benign Indicates an adequate sample showing no
evidence of malignancy

Atypical The aspirate can have all the
probably characteristics of a benign aspirate, but
benign certain features not commonly seen in

benign aspirates may be present

Suspicious of The material is not diagnostic of
malignancy malignancy but may show some

malignant features without overt
malignant cells being present

Malignant Indicates an adequate sample containing
cells characteristic of carcinoma or
other malignancy

NETWORK PERFORMANCE
The value of belief in the diagnostic out-
comes, as provided by the network, was used
to determine the ability of the system to diag-
nose correctly breast aspirates. Belief thresh-
olds were defined so that cases could be
allocated into groups based on their network
derived diagnostic probability and compared
with the original diagnosis. If a case had a
probability of >0-90 it was recorded as a
clear-cut BENIGN or a MALIGNANT case
by the network. Cases which had a belief in
benign of <0 90 but >0 50 were called
EQUIVOCAL (B). Cases which had a belief
in malignant of <0 90 but >0 50 were desig-
nated EQUIVOCAL (M).

ADDITIONAL DIAGNOSTIC MEASUREMENTS
Cumulative diagnostic probability graphs
Probability graphs were drawn for each case,
plotting the cumulative diagnostic probability
after each piece of evidence was submitted (fig
4). The evidence nodes were examined in an
order considered by the cytologist to be of
decreasing importance to the final diagnosis.
Graph characteristics could be measured in
simple terms: the number of peaks (P-score),
troughs (T-score), and intersects with the 0-5,
0 5 threshold (C-score) were determined for
each case. These measure the extent of con-
flicting information across the range of diag-
nostic clues.

0
E
0
0

.0

-

m

Diagnostic clues
Figure 4 Cumulative probability graph for a benign
fibroadenoma. Notice that it is the presence of bare nuclei
which has the strongest initial effect in keeping the line in
benign halfof the chart.
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Table 4 Binary code for absolute benign cases andfor malignant cases

Cell
Bare nuclei arrangement

Cellulaity Cohesion Pleomorphism
Fewl Evenl Irreg.

Numerous Moderate Absent Low Moderate High Strong Moderate Poor None Mild Moderate Severe flat overlap

Absolute benign cases:
1 0 0 1 0 0 1 0 0 1 0 0 0 1 0

Malignant cases:
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

Binary coding and distance measures
This required defining a binary code for a
hypothetical "absolute" benign case. For each
diagnostic feature, the most typical outcome
for a benign case was given a value of 1, and
the other outcomes a value of 0 (table 4).
Therefore, the binary code for benignity is:
100l001001000l0100l000l01 against which
the codes for real cases were compared.
Apocrine metaplasia was omitted from the
binary scoring system, because while its pres-
ence is indicative of benignity, its absence has
no diagnostic power. Each case in the series
was allocated a similar code based on the
most prevalent outcome of each feature (table
4).

Deviation away from the absolute normal
binary code was quantified using two distance
measures. Firstly, the Hamming distance
measures the number of digits which change
to produce the new code.12 The greater the
deviation away from the normal blueprint, the
larger will be the Hamming distance.
A second measure was used where the

sequences of diagnostic clue values were con-
sidered as a string, with substrings for each
clue. The total number of jumps necessary to
produce the new clue value for each clue inde-
pendently were counted and summed. This
we termed the "diagnostic clue distance".
These measures were made for each case in
the series as additional evidence for the diag-
nostic classification of cases.

Table 5 Likelihood ratios for a benign case number 1 *

Bare nuclei:
Numerous, moderate, few/absent
0-30 0-90 0-30

Cellularity:
Low, moderate, high
0 75 0-65 0 10

Cohesion:
Strong, moderate, poor
0 90 0-60 0 05

Pleomorphism:
None, mild, moderate, severe
0-85 0-75 0-15 0-01

Cell arrangement:
Even/flat, irregular/overlap
0-80 0 10

Nuclear size:
Small, medium, large
0-95 0-25 0 01

Nucleoli:
None, single, multiple
090 050 010

Intracytoplasmic lumina:
Present, absent
0 10 0-95

Aprocrine cells:
Present, absent
0-01 0-99

Mucinous background:
Present, absent
0-10 0-98

*Enteing this evidence into the Bayesian network resulted in a
Benign/Malignant probability of 1-00/0 00 (see table 6)

REPRODUCIBILITY OF RELATIVE LIKELIHOOD
RATIOS
The same series of cases were relabelled and
presented to the same cytologist who was
blind to the original diagnosis and to the pre-
viously defined likelihood ratios. They were
reassessed and new likelihood ratios for each
case entered into the network. Reproducibility
of case classification based on the network
diagnostic probability was assessed.

Results
Likelihood ratios for each of the diagnostic
features were estimated for all 40 cases. An
example of a typical result for a benign case is
shown in table 5.
The diagnostic probability results provided

by the Bayesian belief network for all 40 cases
are shown in table 6.

Table 6 List of cases with resulting diagnostic probability
provided by Bayesian beliefnetwork

Benign

Malignant

Atypical/benign }

Suspicious

Belief

Benign Malignant

1-00 0.00
0 59 0-41
1-00 0.00
093 007
1-00 0-00
0-99 0-01
0-99 0-01
1-00 0.00
1-00 0-00
1-00 0-00
0-99 0-01
1-00 0-00
1-00 0.00
1-00 0-00
1-00 0.00
1-00 0-00

0-00 1-00
0-00 1-00
0-08 0-92
0-00 1-00
0-00 1-00
0-00 1-00
0-00 1-00
0-00 1-00
0-00 1-00
043 057
0-00 1.00

1-00 0-00
1-00 0-00
0-98 0-02
0-68 0-32
095 005

I 0-91
0-08
0-12
005
0-84
0-26
0*00
0 34

009
0-92
0-88
095
0-16
0-74
1-00
0-66
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Intracytoplasmic Mucinous
Nuclear size Nucleoli lumina background

Small Medium Large None Single Multiple Present Absent Present Absent

Absolute benign cases::
1 0 0 1 0 0 0 1 0 1

Malignant cases:
0 1 0 0 1 0 1 0 0 1

BENIGN AND MALIGNANT CASES
Of the 16 cases diagnosed by the cytologist as
benign, all were given probabilities in favour
of a benign diagnosis by the network (table 6).
One case, however, fell into the EQUIVO-
CAL (B) category with a benign/malignant
belief of 0-59/0-41. Review of this case
showed that it was a fibroadenoma, a lesion
which can pose diagnostic difficulties in cytol-
ogy. Evidence for benignity came from the
probability graph (fig 4) which showed that
the probability line remained completely
within the benign half of the graph. While the
Hamming distance for this case had no dis-
criminatory power, the diagnostic clue dis-
tance was lower in the fibroadenoma
compared with the malignant cases (fig 5).
None of the benign cases had a positive C-
score (table 7).
Of the 11 malignant cases, again all were

given probabilities in favour of a malignant
diagnosis by the network (table 6). A single
case had a lower probability than the rest
(benign 0-43 malignant 0-57) putting it into
the EQUIVOCAL (M) group. On review this
was found to be an aspirate from an infiltrat-
ing lobular carcinoma, again a lesion difficult
to diagnose from cytology. Examination of the
probability curve (fig 6) clearly showed con-
flicting evidence with a C-value of 2. The
number of evidence nodes which support a
benign belief was four as opposed to six
downward shifts supportive of malignancy.

This lobular carcinoma was the only malig-
nant case to show a probability curve which
cut the 0 50:0 50 threshold line (table 7).

ATYPICAL PROBABLY BENIGN CASES
All of the atypical probably benign cases had
benign probabilities and one of these fell into
the EQUIVOCAL (B) category. None of the
belief curve characteristics or binary distance
measures could be used to discriminate these
from certain benign aspirates.

SUSPICIOUS CASES
Of the eight suspicious cases, four showed
indeterminate probabilities meaning that they
could not be directly classified as benign or
malignant. Of these four, three showed higher
probabilities for malignancy (EQUIVOCAL
(M)). All of these three cases were confirmed
to be malignant on biopsy. The single case
having a network benign probability of 0-84
was shown to be an infiltrating lobular carci-
noma. Three cases were classified as malig-
nant by the network, all of which were
confirmed to be malignant on biopsy. A single
case was given a benign probability (>090)
by the network, but examination of the proba-
bility curve showed it to have a C-score of 1, a
T-score of 3 and a P-score of 3.

All but one of the suspicious cases had a
probability curve which cut the 0-5:0 5
threshold on one or more occasions (table 7).

REPRODUCIBILITY OF RELATIVE LIKELIHOOD
RATIOS
Re-examination of the same cases resulted in
slightly different likelihood ratio vectors.
Correct case classification based on the final
probability, however, was not significantly
affected. Benign and malignant cases were
much more clearly defined on the second
occasion, with all benign cases having a
1-00/0-00 benign/malignant probability and
all malignant cases showing a 0-00/1-00
benign/malignant probability. As before,

Figure S Comparison of
binary distance measures
for benign and malignant
cases. Thefibroadenoma
(F) which showed non-
definite probability values
was categorised into the
benign range on the basis
of the diagnostic clue
distance.
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4
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Table 7 Number of cases falling into C-score, P-score, and T-score intervals, as calculatedfrom cumulative probability
plots

C-score P-score T-score

0 1 2 0 1 2 3 4 0 1 2 3 4

Benign (n = 16) 16 0 0 11 2 0 3 0 11 2 1 2 0
Atypicalprobablybenign (n = 5) 5 0 0 3 0 0 2 0 3 0 1 1 0
Suspicious (n = 8) 1 3 4 0 1 4 2 1 0 1 1 5 1
Malignant (n = 11) 10 1 0 8 1 2 0 0 8 1 0 2 0

_*- X , | | |

_ /

,. . . ~~~~Nl. .

l l

so 0

~ ~

l .41

suspicious cases fell into the equivocal cate-
gory with clear signs of conflicting evidence in
their cumulative probability curves.

Discussion
The role of expert systems in the diagnosis of
breast pathology has been considered before.
Heathfield et al developed a rule based expert
system for the diagnosis of breast FNAC
based on a series of IF ... THEN rules where
uncertainty in individual rules and in the final
decision was not assessed.'3 This approach is a

commonly used method of representing
knowledge in expert system development, but
it is questionable whether diagnostic expertise
can be reduced to a series of simple monotonic
rules. The incorporation of certainty measures
in rule based systems, the methods used to
update certainty and the handling of missing
data, can also be problematic.'0 14 Bayesian
belief networks, however, can provide a reli-
able method for handling certainty which is
based on well established probability calculus.
They can also operate to completion and
reach a final diagnostic belief even when evi-
dence is missing. Some of the problems
associated with rule based knowledge repre-
sentation were recognised in a later paper by
Heathfield's group"5 who had developed an

expert system for diagnosis in breast
histopathology.
The relation between cytological features

and the diagnosis is clearly associated with
uncertainty. In Bayesian models this uncer-

tainty is represented by conditional probabili-
ties which express the likelihood of a feature
being present given the diagnosis. In theory, it
might be possible to use statistically defined
probabilities-from frequency counts-to
construct the CP matrices necessary for
Bayesian belief networks. In the current

study, however, CP matrices were con-
structed using probabilities proposed by the
cytopathologist-that is, "personal probabili-
ties". They are an attempt to convey in quan-
titative terms the knowledge and experience
of the cytopathologist and as such, provide
useful information to a knowledge based sys-
tem of this kind. CP matrices are central to
the success of a belief network and care must
be taken in their construction. If the defined
conditional probabilities do not provide the
expected results they can be adjusted in a
training process, based on specimens of
known diagnosis, until the network performs
correctly. In this particular study, however,
the original CP matrices devised by the
cytopathologist remained unchanged even
after testing.
To start the network, prior probabilities

must be given for the diagnostic outcomes,
benign and malignant. In practice, the atti-
tude adopted by most cytopathologists is that
each aspirate is examined equally and inde-
pendently, with no preconceived notions as to
its most probable diagnosis, regardless of the
fact that in statistical terms an individual case is
more likely to be benign than malignant. We
therefore used equal prior probabilities
(05,0O5) for the diagnostic outcomes of
benign and malignant in the current network
and this was shown to work well.

It was evident that while the results of the
final belief scores were useful, additional
information could be obtained by plotting the
cumulative diagnostic probability curve after
each evidence node had been sampled. This
allowed the cytopathologist to trace the steps
made in the diagnostic decision sequence and
their effect on the final decision, a useful pro-
cedure, particularly for difficult cases. It also
highlighted evidence which did not match the
general trend of the curve. If doubt existed
over the response of the curve to the evidence
entered for a particular feature then this fea-
ture could be reviewed cytologically. This
quantitative feedback on the diagnostic
process is fundamental to ensuring that each
piece of diagnostic evidence is considered in
full and that diagnostic accuracy is improved.
The storage of diagnostic probability curves in
this way provides a quantitative record of the
diagnostic decision process and would have
important implications in assessing repro-
ducibility and quality control. It is important
to remember that the quantitative characteris-
tics of the probability curve are strongly
dependent on the order in which the evidence
nodes are sampled. This needs to be stan-
dardised, as in this study, if comparisons are

Figure 6 Cumulative
probability graph for
malignant lobular
carcinoma.
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to be made. It should be emphasised, how-
ever, that the final probability is completely
independent of the order in which the evi-
dence nodes are examined.
The ability of the network to allocate cor-

rectly benign and malignant breast aspirates
on the basis of the diagnostic probability was
excellent and when apparent misclassifica-
tions occurred, it was due to lesions which are
known to pose diagnostic difficulties. Only
one case of fibroadenoma (out of four) fell
within the equivocal belief range. Supportive
evidence of the benign nature of this case,
however, came from the probability curve
characteristics. The fact that bare nuclei are
such an important discriminant in the differ-
ential diagnosis of fibroadenoma and carci-
noma perhaps justifies assigning a stronger
CP matrix for this feature in future. The diag-
nostic clue binary distance measurement also
showed this case to be more closely akin to
the other benign cases than malignancy.
The single malignant case which was classi-

fied into the equivocal range by the network
was an aspirate from an infiltrating lobular
carcinoma. Examination of the cumulative
probability curve for this case (fig 7) also
clearly showed the presence of conflicting evi-
dence. It is encouraging that the network was
capable of firstly allocating this case in the
equivocal (M) belief range and secondly, the
high C-score would alert the user to the
unusual nature of the evidence.

Atypical probably benign cases all fell into
the benign belief range and could not be dif-
ferentiated from true benign cases. In practice
this could be satisfactory as atypia is often
seen in examples of benign epithelial hyper-
plasia. All of the atypical cases were benign on
biopsy.

Suspicious cases could be characterised not
only by their equivocal probabilities but by
their probability curves which were highly
erratic, resulting in high C, T, and P values.
Success of the network diagnostic probability
was also evident as suspicious cases which
were classified as EQUIVOCAL (M) or
MALIGNANT by the network were con-
firmed to be malignant on biopsy.
The reproducibility of individual likelihood

ratios for each feature was questionable, but
the final classification of cases in the repeated
study was highly reproducible. This demon-
strates the need for multiple evidence in
reaching a diagnostic decision and shows that
no single feature provides decisive evidence.
Bayesian belief networks permit the combina-
tion of features which independently may be
weak but cumulatively lead to a decision with
high certainty. While people are capable of
combining evidence to support a decision,
this is often undermined by conceptual, ter-
minological, and behavioural inconsistencies
and they cannot quantify the process leading
to, and the certainty of, the final decision.
Bayesian belief networks, while maintaining
the role for linguistic and descriptive termi-
nology for evidence communication, provide
a quantitative means of describing the diag-
nostic decision making process.

These results verify the potential of this sys-
tem as an aid to decision making. The net-
work needs to be tested on a larger series of
cases with emphasis on those cases which
pose particular difficulties-for example, lob-
ular carcinomas. Only by examining larger
numbers of difficult cases can methods to
improve network performance be found.

In the current design only cytological evi-
dence has been used. In practice, clinical evi-
dence provides important supplementary data
used in the diagnosis. Future work will incor-
porate clinical evidence either within the
existing network structure or as a separate
network whose result can be used to support
or reject the outcome of the cytological belief
network. Also the network described here is
based on features seen in air-dried slides but a
similar network could be constructed using
features appropriate for alcohol fixed prepara-
tions.
The value of the system designed in the

current study is three-fold. Firstly, it can be
used to provide the cytopathologist with an
aid to decision making in the routine diagnos-
tic assessment of breast aspirates. At the
moment the design of the system is primitive
in that the cytopathologist has to provide
numbers (likelihood ratios) for each evidence
node. This can be time consuming and even
with practice can still take between five and
10 minutes per case. This could be overcome
by using stored image libraries with pre-
defined likelihood ratios, allowing the user to
select images which most closely match the
features seen in the current case. This
divorces the user from having to convert his or
her cytological impressions into numbers yet
provides a highly visual means of providing
data suitable for the network. As cumulative
probability curves for cases with certain out-
comes are recorded, statistical data will
become available on conditional probability
values between P, T, and C scores and the
diagnostic outcome. The network could be
extended to use this information about its
own decision making process as additional
diagnostic clues, and enter likelihood vectors
as a last step before it reports a final outcome
probability.

While an interactive system as described
might prove successful, the role of quantita-
tive cytomorphometric data should not be
negated. Numerous studies have shown that
nuclear and cellular measurement can be ben-
eficial in the objective diagnosis of breast
cytologyl'20 and future work should attempt
to include these as additional evidence within
the framework of a Bayesian belief network.

Secondly, a model of this sort can be used
as the basis for a teaching system for those
inexperienced in breast FNAC diagnosis. The
computer could, therefore, act as a consul-
tant, leading the user through the diagnostic
process, prompting for information about the
case in hand, providing visual examples of
diagnostic features, querying the users'
responses and on reaching a decision, retrace
the steps used to obtain it.

Finally, it would be desirable to design a
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computer system capable of automated diag-
nosis in breast FNAC. Such systems have
been considered for many years in cervical
cytology2l-23 and recent increases in processing
power and advances in machine vision, expert
system, and neural network technology have
now made this a reality.

It is clear that expert computer systems are

going to be increasingly investigated in diag-
nostic histology and cytology in the next few
years. Computerised interactive decision sup-
port systems, such as the one described here,
will, without doubt, lead to improved consis-
tency and reproducibility in diagnosis.
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