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Sensitivity analyses

Robustness of variability of axonal connectivity weights
measure V

In the main text, we compute the variability of axonal connectivity weights for three

different datasets as V = E(v)
Var(m) , where v is the variance of connections measured at

least twice, and m is the mean of all connections measured. Different definitions of
variability exist, each measuring a slightly different aspect of the same concept. Here,
we examine the robustness of our results with respect to two of these, both addressing
addressing a potential shortcoming of the definition we employed.

Firstly, a bias could have been introduced by the current definition as v and m are
not computed from the exact same set of connections, e.g. if the connections measured
only once would be more or less variable. We therefore compute V2, which is identical
to V except that we compute the means m2 over connections measured at least twice,
such that v2 = v and m2 are computed over the same set of connections. Secondly, the
current definition ignores information by discarding measurements of 0, which is
necessary due to our log-transform of weights. We therefore compute V3, which is
identical to V , except that all weights x are first transformed as 10x. In other words, in
computing V3 the weights from the two multi-experiment datasets are not
log-transformed (as they were to compute V ), and the weights from the macaque
dataset are transformed as follows: 0→ 1, 1→ 10, 2→ 100, 3→ 1000. We then compute
the means m3 and variances v3 as before for all pairs of regions whose connection was
measured at least twice, for which at least one measurement was non-zero (i.e. the
connection exists). We include weight 0 in these computations. We then compute V3 as
the log transform of the mean variance divided by the variance of the means

V3 = log10

(
E(v3)

Var(m3)

)
Results In the main text, we found the mouse dataset’s consistency (V = 0.35) to be
intermediate between that of the multi-experiment macaque (V = 0.13) and collated
macaque (V = 1.3). Computing the means over all connections measured at least twice
resulted in very similar results: V2 = 0.33 (mouse), V2 = 0.14 (macaque), V2 = 2.0
(collated macaque). The large increase in the collated macaque data is due to its integer
nature and high inconsistency; repeatedly measuring a connection is likely to lead to a
less extreme mean value for the connection. Thus, excluding connections measured only
once will lead to a lower variance of the means. Likewise, our second approach of
including zero measurements by taking the log transform later, leads to similar results:
V3 = 0.20 (mouse), V3 = 0.13 (macaque), V3 = 1.7 (collated macaque).
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Use of informative priors in estimation

In the main text, we used a Bayesian approach to optimally estimate connection weights
and associated uncertainty from viral tracing data. We used uninformative priors
(uniform distributions on our parameters µ and σ). Such an uninformative prior assures
that the posterior distribution optimally reflects the information present in the data.
One advantage of the Bayesian approach is that it can easily incorporate information
from other sources, such as an independent set of tract tracing experiments, by adjusting
the prior distributions. To test the impact of using informative priors, we repeated our
analysis, assuming prior knowledge for the weight of all connections. In particular, we
used a normal Norm(−2, 2) distribution for all µij . This prior is relatively close to the
full posterior distribution of weights from our full analysis, and expresses the belief that
all weights should be similar to this distribution. We would expect that weights for
which much information is present in the data would show a posterior distribution close
to the the posterior found in the initial analysis, i.e. would not be affected much by the
prior. On the other hand, we expect weights for which little information exists in the
data to have a posterior distribution close to their prior distribution.

Results Fig. SA1 shows the weights found for the primary visual and dorsal anterior
cingulate area, in the exact same format as Fig. 4 in the main text. As expected, we see
that weights well characterised by the data, i.e. strong weights with small credibility
intervals, have a similar posterior distribution when using uninformative priors (Fig. 4)
or informative priors (Fig SA1). In contrast, the weights for which little information is
present, i.e. the weak weights that that fall below their associated thresholds and have
large credibility intervals, show a posterior distribution much closer to the prior
distribution. In particular, many weights that were previously estimated to be smaller
than -4 mm-3 are now estimated at the higher range of their noise and coinjection
threshold, at around -3 mm-3. This effect can be seen even more clearly in Fig. SA2,
where we plot the complete distribution of weights (µij) and the priors used. When
using an informative prior, it is mainly the weaker weights that become larger, with a
posterior distribution closer to the prior distribution. Strong weights remain at the
same values as when using uninformative priors.

These results illustrate that 1) our overall results are relatively robust to inclusion of
more informative priors and 2) informative priors can be sensibly used in estimating the
connection weights, paving the way for future studies combining different datasources.

Correction for uninjected regions

In our analysis, we only obtain estimates for efferent connections of the mouse
connectome from 31 of the 43 cortical brain regions, as only these were injected with at
least 50% of the injection volume for at least one experiment. Thus also our estimate of
the density of the full connectome ignores the connections originating from these
remaining 12 regions. This could bias our results, as these regions may have different
anatomical properties affecting their connectedness, e.g. they are smaller on average
than the injected regions (Table S1). As larger regions tend to be more well connected,
our estimates may be overestimates of the true density. Here, we aim to correct for this
possible bias by estimating the connection density of the 12 uninjected regions using a
set of anatomical descriptors. Although this is a crude way of estimation, it allows us to
assess the magnitude of this possible bias. We employ a linear model that includes three
available anatomical descriptors: region size, neuronal surface density and neuronal
density.

We compute the adjusted network density function da(x), defined as the percentage
of all possible connections that are of at least weight x, corrected for the uninjected
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regions. First, for any x, we calculate this density for C(x), defined in the main text as
the subset of the 31 injected regions that have at least one connection for which the
thresholds are smaller than x. We then fit a multiple regression model on these
densities, with region size, number of neurons per surface area and number of neurons
per unit of volume as explanatory variables. The latter two were obtained from
Herculano-Houzel et al. [1]. These authors provide these measures for coarse areas of
the mouse brain. We mapped our 43 regions to their subdivision and assigned the
regions the corresponding values. As our regions were subsets of their subdivisions,
several of our regions are assigned equal values (Table S1). From the regression model
we obtain estimates of the densities of the 12 uninjected regions. Let du(x) be the
average of these estimates. We then set our adjusted network density as the weighted
average over all estimated densities

da(x) =
31

43
d(x) +

12

43
du(x)

Results Fig. SA3 shows results found, in the same format as Fig. 5 in the main text.
We find that adjusting for uninjected regions leads to somewhat lower and substantially
more uncertain estimates: intrahemispheric connection density 71% (95% credibility
interval (CI): 67% - 75%) (main text: 73% (95% CI: 71%, 75%)), interhemispheric 52%
(95% CI: 48%, 56%) (main text: 57% (95% CI: 54%, 59%)). Surprisingly, although the
adjusted density da(x) is smaller than d(x) for most x, it becomes larger as x becomes
smaller than around -6. This may be due to a bias caused by the small number of
regions that have a noise threshold low enough that connections to them can be
measured for these low x values. As these low-threshold regions are mainly visual
regions, all mainly connected to other visual regions sharing a distinct set of anatomical
properties such as high neuronal density, the linear model might gives biased estimates
for the connectivity of the uninjected regions.

Although the simplicity of the model we here employed renders it difficult to make
definitive statements on the connection density of the full cortex, the analysis strongly
suggests that our conclusions on the high value of the connection density are unlikely to
be affected by the presence of uninjected regions.
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Figure SA1. Representation of connection weights (normalized connection density, NCD)
and thresholds for (left) primary visual area and (right) dorsal anterior cingulate area, when
assuming an informative prior. This figure corresponds to Fig. 4 in the main text. Connections to (top)
ipsilateral and (bottom) contralateral target regions are shown, sorted by the ipsilateral weights as originally
found (Fig. 4, main text) to facilitate comparison. (Black) Log connection weights and 95% credibility
intervals (CI) are overlaid on the (red) noise threshold, due to low specificity of the automated segmentation
algorithm, and the (blue) co-injection threshold, due to co-injection of several regions in one experiment. The
noise threshold is identical for contralateral homologue target regions, and remains unchanged when
assuming an informative priors. Notice that few connections are estimated as being lower than their
threshold: in this case the data will have limited information on the actual weight, and the posterior
distribution will be similar to the prior distribution. Thus, the main difference with the results found when
using an uninformative prior (Fig. 4, main text) lies in the posterior distribution of these weak weights.
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Figure SA2. Distribution of connection weights and assumed prior
distribution. (Blue) Histogram of connection weights and (red) the prior distribution
assumed, for (top) informative prior and (bottom) uninformative prior used. We see the
main effect of the informative prior is to increase the estimates of the weak,
sub-threshold weights, for which little information is present in the data.
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Figure SA3. Network density of the cortical brain network for mouse (cf
Fig 5 in main text). Shown is the percentage of fractional weights stronger than a
threshold d(x), as a function of the threshold x used, separated in two panels for clarity,
for (dark blue, top) mouse intrahemispheric, (light blue, bottom) mouse
interhemispheric and (orange) the same density adjusted for the possible bias caused by
uninjected regions da(x). The red and blue lines give the point estimates for d(x) and
da(x), i.e. the median of the values from the MCMC sampled. The thick solid lines give
the density of thresholds for all connections, the dashed vertical line gives an estimated
lower bound of the mean contribution of a single projecting neuron. Adjusting for
uninjected regions leads to lower estimates and more uncertainty, i.e. a wider
distribution. The higher values for da(x) for x < −6 are probably due to a bias caused
by only a limited number of regions having noise thresholds < −6.
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