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DYNAMICS OF A TWO-DIMENSIONAL CANN WITH SFA

The dynamics of a 1D CANN with SFA was analyzed previously (Mi et al., 2014). Here, we solve the
dynamics of a 2D CANN with SFA.

When only SFA is included, the dynamics of a 2D CANN is written as (compared to Eqs.(1, 3, 7) in the
main text),

τ
∂U(x, t)
∂t

= −U(x, t) + ρ

∫ +∞

−∞

∫ +∞

−∞
J(x; x′)r(x′, t)dx′ − V (x, t) + Iext(x, t),

(S1)

τv
∂V (x, t)
∂t

= −V (x, t) +m[U(x, t)]+, (S2)

r(x, t) =
[U(x, t)]2+

1 + kρ
∫ +∞
−∞

∫ +∞
−∞ [U(x′, t)]2+dx′

. (S3)

By numerically solving the equations above, we can obtain the phase diagram of the network, as shown in
Fig.1B.

Plateau decay of network activity

In the parameter regime where the network can only hold the silent state but is close to the boundary
separating the active states (e.g., the point N in Fig.1B), the network dynamics displays an interesting
phenomenon, that is, the network activity decays very slowly on the time scale of SFA. Below we analyze
this plateau decay behavior.

We consider that during the decay the network state still has the Gaussian-shape (a good approximation
confirmed by simulation), but the height of the bump changes over time, which is given by

U(x, t) = Au(t)exp
[
−
(x− qx)2 + (y − qy)2

4a2

]
, (S4)

r(x, t) = Ar(t)exp
[
−
(x− qx)2 + (y − qy)2

2a2

]
, (S5)

V (x, t) = Av(t)exp
[
−
(x− qx)2 + (y − qy)2

4a2

]
, (S6)
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where q = (qx, qy) denotes the bump position.

Substituting Eqs. (S4-S6) into Eq. (S1-S2), we get

τ
dAu
dt

= −Au +
ρJ0Ar

2
− Av, (S7)

τv
dAv
dt

= −Av +mAu, (S8)

Ar =
A2
u

1 + 2πkρa2A2
u
. (S9)

For the illustrative purpose, we only study the dynamics of bump height Au and assume that Av reaches
to its steady value instantly. By setting dAv/dt = 0 in Eq.(S8) and substituting it into Eq.(S7), we obtain,

τ
dAu
dt

= −(1 +m)Au +
ρJ0A

2
u

2 + 4πkρa2A2
u
≡ F (Au). (S10)

At the boundary between the silent and active states, the network holds a stable state Au = 0 and an
unstable state A∗u = 4(1+m)/(ρJ0) (obtained by solving F (Au) = 0). Close to the boundary, the function
F (Au) has the form as illustrated in Fig.S1. We see that starting from a state A0

u > Au∗, the decay of
the bump height will take a considerable amount of time to cross the point A∗u, since in this region, the
decaying speed of the bump height given by F (Au) is close to zero (see Fig.1D).

The time T consumed for the network crossing the point A∗u is estimated to be

T∫
0

dt =

A∗−u∫
A∗+u

τ

F (Au)
dAu,

≈
A∗−u∫
A∗+u

τ

F (A∗u) +
1
2(Au − Au∗)2F

′′
(Au∗)

dAu,

=
2τ√

2F (A∗u)F
′′
(A∗u)

[
tan−1

A∗−u√
2F (A∗u)/F

′′
(A∗u)

− tan−1
A∗+u√

2F (A∗u)/F
′′
(A∗u)

]
,

=
2τ√

2F (A∗u)F
′′
(A∗u)

G(A∗u). (S11)

where A∗+u and A∗−u denote, respectively, the points slightly larger or smaller than A∗u, F ′(A∗u) =

dAu/dt|A∗u , and F
′′
(A∗u) = dF ′(Au)/dt|A∗u . To get the above results, we use the second-order Taylor

expansion of F (Au) at A∗u, and the condition F ′(A∗u) = 0.

In the limit of F (A∗u)→ 0, the value of G(A∗u) is bounded. Thus, the time of the bump height decay is
on the time scale of

T ∝ 2τ√
2F (A∗u)F

′′
(A∗u)

. (S12)
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Traveling wave state

When SFA is strong, the negative feedback it generates will suppress localized neuronal responses,
leading to an interesting phenomenon in the dynamics of a CANN. That is, the network can support a
spontaneously moving bump without relying on an external drive. This phenomenon is called traveling
wave. When the network bump is moving, its Gaussian shape is distorted. The higher the moving speed,
the more severe the distortion is. For simplicity of analysis, we assume that the network state still has the
Gaussian shape, which is assumed to be

U(x, t) = Auexp
[
−(x− vt cos θ)2 + (y − vt sin θ)2

4a2

]
, (S13)

r(x, t) = Arexp
[
−(x− vt cos θ)2 + (y − vt sin θ)2

2a2

]
, (S14)

V (x, t) = Avexp
[
−(x− vt cos θ + d cos θ)2

4a2

]
exp

[
−(y − vt sin θ + d sin θ)2

4a2

]
,

(S15)

where v is the moving speed of the bump and θ = arctan(y/x) is the moving direction. The parameter d
denotes the separation between the peaks of the bumps U(x, t) and V (x, t) along the moving direction θ.
The condition vd > 0 always holds, due to that the feedback of SFA is delayed.

To solve the traveling wave state of the network, we utilize an important property of CANNs, that is, the
dynamics of a CANN is dominated by a few motion modes corresponding to different distortion features
of the bump state. We can project the network dynamics on these dominating modes and simplify the
network dynamics significantly (Fung et al., 2010). The first two dominating modes we use correspond
to the distortions in the height and position of a bump. For the dynamics of U(x, t) and V (x, t), they are
given by

u0(x|q) = e−[(x−qx)
2+(y−qy)2]/(4a2),

u1(x|q) = cos θ(x− qx)e−[(x−qx)
2+(y−qy)2]/(4a2) + sin θ(y − qy)e−[(x−qx)

2+(y−qy)2]/(4a2),

v0(x|q− d) = e−[(x−qx+dx)
2+(y−qy+dy)2]/(4a2),

v1(x|q− d) = cos θ(x− qx + dy)e
−[(x−qx+dx)2+(y−qy+dy)2]/(4a2)

+sin θ(y − qy + dy)e
−[(x−qx+dx)2+(y−qy+dy)2]/(4a2),

where qx = vt cos θ, qy = vt sin θ, dx = d cos θ and dy = d sin θ.
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Substituting Eqs.(S13-S15) into Eq.(S1), we obtain

Left-side = τAuv cos θ
x− vt cos θ

2a2
e−[(x−vt cos θ)

2+(y−vt sin θ)2]/(4a2)

+τAuv sin θ
y − vt sin θ

2a2
e−[(x−vt cos θ)

2+(y−vt sin θ)2]/(4a2),

Right-side = [−Au +
ρJ0Ar

2
]e−[(x−vt cos θ)

2+(y−vt sin θ)2]/(4a2)

−Ave−[(x−vt cos θ+d cos θ)
2]/(4a2)e−[(y−vt sin θ+d sin θ)

2]/(4a2).

Projecting both sides onto the motion mode u0(x|q), we obtain

− Au +
ρJ0Ar

2
− Ave−

d2

8a2 = 0. (S16)

Projecting both sides onto the motion mode u1(x|q), we obtain

τAuv = Avde
− d2

8a2 . (S17)

Substituting Eqs.(S13-S15) into Eq.(S2), we obtain

Left-side = τvAvv[
x− vt cos θ + d cos θ

2a2
cos θ +

y − vt sin θ + d sin θ

2a2
sin θ]

×e−[(x−vt cos θ+d cos θ)
2+(y−vt sin θ+d sin θ)2]/(4a2),

Right-side = −Ave−(x−vt cos θ+d cos θ)
2/(4a2)e−(y−vt sin θ+d sin θ)

2/(4a2)

+mAue
−[(x−vt cos θ)2+(y−vt sin θ)2]/(4a2).

Projecting both sides onto the motion mode v0(x|q− d), we obtain

Av = mAue
− d2

8a2 . (S18)

Projecting both sides onto the motion mode v1(x|q− d), we obtain

τvAvv = mAude
− d2

8a2 . (S19)

Substituting Eqs. (S13,S14) into Eq. (S3), we get

Ar =
A2
u

1 + 2kρπa2A2
u
. (S20)
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Combining Eqs.(S16-S20), we get the bump heights, the separation distance d, and the speed of the
traveling wave, which are

Au =
ρJ0 +

√
ρ2J2

0 − 32kρπa2(1 + τ/τv)2

8kρπa2(1 + τ/τv)
, (S21)

Ar =
ρJ0 +

√
ρ2J2

0 − 32kρπa2(1 + τ/τv)2

4kρ2J0πa2
, (S22)

Av =

√
mτ

τv

ρJ0 +
√
ρ2J2

0 − 32kρπa2(1 + τ/τv)2

8kρπa2(1 + τ/τv)
, (S23)

v ≡ vint =
2a

τv

√
ln
mτv
τ
, (S24)

d = 2a

√
ln
mτv
τ
. (S25)

We see that the speed of the traveling wave (Eq.(S24)) is fully determined by network parameters, therefore
we call it the intrinsic speed of the network, denoted as vint.

The condition for the network to hold a traveling wave is given by

m > τ/τv, 0 < k <
ρJ2

0

32πa2(1 + τ/τv)2
. (S26)

Tracking performance

We analyze the tracking performance of a 2D CANN with SFA in response to an external moving input.
Without loss of generality, we consider that the external input has the form,

Iext(x, t) = Aampexp
[
−(x− vextt cos θ)

2 + (y − vextt sin θ)
2

4a2

]
, (S27)

where Aamp denotes the input strength. The input moves at a constant speed vext in the direction θ.

Denote S = (Sx, Sy) the separation between the network bump and the external input. During the
tracking, the network state still keeps the Gaussian-shape, which can be written as

U(x + S, t) = Auexp
[
−
(x− Sx − vextt cos θ)

2 + (y − Sy − vextt sin θ)
2

4a2

]
, (S28)

r(x + S, t) = Arexp
[
−
(x− Sx − vextt cos θ)

2 + (y − Sy − vextt sin θ)
2

2a2

]
, (S29)

V (x + S, t) = Avexp
[
−(x− Sx − vextt cos θ + d cos θ)2

4a2

]
×exp

[
−
(y − Sy − vextt sin θ + d sin θ)2

4a2

]
. (S30)
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We consider that in the stationary state, the network is able to track the moving input, which means that
the bump moves at the speed vext and the separation can be expressed as S = (S cos θ, S sin θ) with S a
constant. The condition vextS > 0 implies that the bump is leading the external input; and otherwise is
lagging behind.

We apply the projection method as described above to solve the tracking behaviors of the network.
Substituting Eqs.(S28-S30) into Eq.(S1), we obtain

Left-side = τAuvext cos θ
x+ Sx − vextt cos θ

2a2
e−[(x+Sx−vextt cos θ)

2+(y+Sy−vextt sin θ)
2]/(4a2)

+τAuvext sin θ
y + Sy − vextt sin θ

2a2
e−[(x+Sx−vextt cos θ)

2+(y+Sy−vextt sin θ)
2]/(4a2),

Right-side = [−Au +
ρJ0Ar

2
]e−[(x+Sx−vextt cos θ)

2+(y+Sy−vextt sin θ)
2]/(4a2)

−Ave−[(x+Sx−vextt cos θ+d cos θ)
2+(y+Sy−vextt sin θ+d sin θ)

2]/(4a2)

+Aampe
−[(x−vextt cos θ)

2+(y−vextt sin θ)
2]/(4a2).

Projecting both sides onto the motion mode u0(x|q− S), we obtain

− Au +
ρJ0Ar

2
− Ave−

d2

8a2 + Aampe
− S2

8a2 = 0. (S31)

Projecting both sides onto the motion mode u1(x|q− S), we obtain

τAuv = Avde
− d2

8a2 − AampSe−
S2

8a2 . (S32)

Substituting Eqs.(S28-S30) into Eq.(S2), we obtain

Left-side = τvAvvext[
x+ Sx − vextt cos θ + d cos θ

2a2
cos θ +

y + sy − vextt sin θ + d sin θ

2a2
sin θ]

×e−[(x+Sx−vextt cos θ+d cos θ)
2+(y+Sy−vextt sin θ+d sin θ)]/(4a2),

Right-side = −Ave−[(x+Sx−vextt cos θ+d cos θ)
2+(y+Sy−vextt sin θ+d sin θ)

2]/(4a2)

+mAue
−[(x+Sx−vextt cos θ)

2+(y+Sy−vextt sin θ)
2]/(4a2).

Projecting both sides onto the motion mode v0(x|q− S− d) and equating both sides, we have

Av = mAue
− d2

8a2 . (S33)

Projecting both sides onto the motion mode v1(x|q− S− d) and equating both sides, we have

τvAvv = mAude
− d2

8a2 . (S34)
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Substituting Eqs. (S28,S29) into Eq. (S3), we get

Ar =
A2
u

1 + 2kρπa2A2
u
. (S35)

Combining Eqs.(S31 - S35), the network dynamics is solved, which gives

d = τvvext, (S36)

Se
− S2

8a2 =
Auvextmτv
Aamp

[
e
− τ

2
v v

2
ext

4a2 − τ

mτv

]
, (S37)

From Eqs. (S37,S24), we see that the condition for Svext > 0, i.e., the network state leads the input, is

|vext| <
2a

τv

√
ln
mτv
τ

= vint. (S38)

Similarly, when |vext| > vint, Svext < 0 holds. This result is confirmed by simulation as shown in Fig.1C.

In practice, when the speed of the external input is not too large, satisfying |vext| � a/τv, and that
a/(2
√
2a)� 1 (which is true in practice), Eq.(S37) can be further simplified to be

S ≈ Auvextτv
Aamp

(m− τ

τv
). (S39)

Thus, when m > τ/τv, the value of S increases linearly with the external input vext, and the leading time
is approximately a constant, i.e., tant = S/vext ≈ Auτv(m− τ/τv)/Aamp.
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Figure S1. The mechanism for plateau decay. Parameters are chosen to be the same as the point N in
Fig.1B. At A∗u, F (A∗u) ≈ 0. Inset displays the fine structure around the point A∗u. Starting from an initial
state A0

u > A∗u, it will take a considerable amount of time to cross the point A∗u.
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