

Figure S1—Regions of the brain showing a group (PI vs. GS) by state (wake vs. NREM sleep) interaction for relative regional cerebral metabolic rate for glucose (Figure 1 and Table 3) mapped onto a high-resolution MRI. The right hemisphere of the brain is indicated with R. The color bar represents F values.

Figure S2—Results of the group (PI-GS), independent of sleep-wake state, analysis (Figure 2 and Table 4) for relative regional cerebral metabolic rate for glucose ($rCMR_{glc}$) mapped onto a

high-resolution MRI. The left and right hemispheres of the brain are indicated with L and R, respectively. The color bar represents t values; blue indicates regions where PI had lower relative rCMR_{glc} than GS across wake and NREM sleep.

Figure S3—Results of the state (NREM sleep-wake), independent of group, analysis (Figure 3 and Table 5) for relative regional cerebral metabolic rate for glucose ($rCMR_{glc}$) mapped onto a

high-resolution MRI. The left and right hemispheres of the brain are indicated with L and R, respectively. The color bar represents *t* values; blue indicates regions where $rCMR_{glc}$ was relatively lower during NREM sleep than wake, and orange indicates regions where it was relatively higher during NREM sleep than wake.

Figure S4—Group Differences in Relative Glucose Metabolism during Wake. We assessed relative regional cerebral metabolic rate for glucose (rCMR_{glc}) in a sample of 44 patients with primary insomnia (PI) and 40 good sleeper controls (GS) during morning wakefulness. PI had lower relative rCMR_{glc} in 4 clusters spanning the neocortex and brainstem. PI also had higher relative rCMR_{glc} than GS in the right cerebellum. All clusters were significant at $P_{3DC_corrected} < 0.05$. A full list of brain regions involving these clusters is presented in Table S1. The color bar represents *t* values; blue indicates regions where PI had lower relative rCMR_{glc} than GS and orange indicates regions where PI had higher relative rCMR_{glc} than GS during wakefulness.

Figure S5—Group Differences in Relative Glucose Metabolism during NREM Sleep. We assessed relative regional cerebral metabolic rate for glucose (rCMR_{glc}) in a sample of 44 patients with primary insomnia (PI) and 40 good sleeper controls (GS) during NREM sleep. Patients with PI had lower relative rCMR_{glc} in three clusters centered on the anterior cingulate, right medial temporal lobe, and right precuneus/posterior cingulate, $P_{3DC_corrected} < 0.05$ for all clusters. A full list of brain regions involving these clusters is presented in Table S1. The color bar represents *t* values; blue indicates regions where PI had lower relative rCMR_{glc} than GS during NREM sleep.

Analysis	Brain region	k ^A	<i>t</i> -statistic (max) ^B	x	у	Z.
Wake	Left frontal cortex and anterior cingulate gyrus	1439	-4.0	-18	38	-4
	Left inferior frontal gyrus and left insula	947	-44	-44	14	14
	Right medial frontal gyrus, anterior cingulate,	1128	-4.7	14	28	-10
	frontal-orbital gyrus, superior frontal gyrus, and					
	caudate					
	Temporal lobe, parietal lobe, precuneus, middle	11925	-5.4	26	-60	-36
	and posterior cingulate gyri, frontal lobe, occipital					
	lobe, left hippocampus, putamen, insula, left					
	brainstem, and left amygdala					
	Right cerebellum	729	3.8	16	-88	-32
NREM	Anterior cingulate, medial frontal gyrus,	2335	-4.6	14	30	-10
	orbitofrontal cortex, inferior frontal gyrus, and					
	right caudate					
	Right posterior cingulate, bilateral precuneus, and	1100	-5.3	12	-40	20

Table S1—Group (GS vs. PI) differences in relative glucose metabolism during wake and NREM sleep.

middle cingulum

Right fusiform gyrus, parahippocampus, superior	2076	-5.1	38	2	-24
and inferior temporal gyri, hippocampus, and					
amygdala					

Note. ^ACluster sizes (k) greater than 670 voxels for wake and 708 voxels for NREM sleep were significant at height threshold

 $p_{uncorrected} > 0.005$ and cluster threshold $P_{3DC_corrected} < 0.05$. ^BNegative *t*-statistics indicate regions where PI had lower relative rCMR_{glc}

than GS; positive *t*-statistics indicate regions where PI had higher relative rCMR_{glc} than GS.

Figure S6—Sleep-Wake Differences in Relative Glucose Metabolism in Patients with Primary Insomnia. We compared relative regional cerebral metabolic rate for glucose (rCMR_{glc}) during NREM sleep to that during wake in a sample of 44 patients with primary insomnia. The color bar represents *t* values; blue indicates regions where rCMR_{glc} was relatively lower during NREM sleep than wake, and orange indicates regions where rCMR_{glc} was relatively higher during NREM sleep than during wake. All clusters were significant at $P_{FWE_corrected} < 0.05$. A full list of regions associated with these significant clusters is presented in Table S2.

Figure S7—Sleep-Wake Differences in Relative Glucose Metabolism in Good Sleepers. We compared relative regional cerebral metabolic rate for glucose ($rCMR_{glc}$) during NREM sleep to that during wake in a sample of 40 good sleeper controls. The color bar represents *t* values; blue indicates regions where $rCMR_{glc}$ was relatively lower during NREM sleep than wake, and orange indicates regions where $rCMR_{glc}$ was relatively higher during NREM sleep than during wake. All clusters were significant at $P_{FWE_corrected} < 0.05$. A full list of regions associated with these significant clusters is presented in Table S2.

Analysis	Brain region	k ^A	<i>t</i> -statistic			
			(max) ^B	x	у	Z
PI	Left orbitofrontal cortex and anterior	61	-8.9	-28	36	-22
	aspects of the left superior, middle, and	0				
	inferior frontal gyri					
	Right frontal cortex	13	-7.8	34	54	0
		17				
	Left medial frontal gyrus and left	24	7.1	0	-4	52
	supplemental motor area	3				
	Left precentral and postcentral gyri	12	8.9	-30	-20	46
		73				
	Right inferior parietal lobe	90	-8.4	54	-44	42
		8				
	Right middle temporal gyrus	34	-6.6	64	-24	-10
		7				
	Left putamen	40	7.1	-32	-8	-2
		1				
	Subgenual area and hypothalamus	61	7.1	4	2	-18
		4				
	Brainstem	14	10.2	4	-32	-44
		98				

Table S2—Sleep-wake differences in relative regional cerebral metabolic rate for glucose(rCMRglc) in patients with primary insomnia (PI) and good sleeper controls (GS).

	Left cerebellum	20	-11.0	-16	-82	-40
		08				
	Right cerebellum	27	-10.7	30	-74	-42
		49				
GS	Left frontal cortex	97	-8.4	-16	-38	-28
		8				
	Right frontal cortex	91	-7.4	28	46	-14
		0				
	Left inferior parietal lobule	45	-8.3	-40	-56	48
		3				
	Right inferior parietal lobule	23	-6.8	46	-58	40
		2				
	Bilateral cuneus, precuneus, calcarine,	13	-7.6	10	-90	4
	lingual gyrus, and posterior cingulate	14				
	Brainstem	18	8.0	8	-16	-46
		79				
	Right cerebellum	78	-7.1	16	-78	-32
		2				

Note. ^ACluster sizes (*k*) greater than 200 voxels were significant at height threshold $P_{FWE_corrected}$ < 0.05. ^BNegative *t*-statistics indicate regions where rCMR_{glc} was relatively lower during NREM sleep than wake; positive *t*-statistics indicate regions where rCMR_{glc} was relatively higher during NREM sleep than during wake.