Supplementary information

Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

Zhongping Xu, Jingwen Li, Xiaoping Guo, Shuangxia Jin* and Xianlong Zhang*

National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei,430070, China

* Corresponding author: Shuangxia Jin and Xianlong Zhang Fax: +86-027-8720196; email: jsx@mail.hzau.edu.cn or <u>xlzhang@mail.hzau.edu.cn</u>

Zhongping Xu (<u>tiramisutes@webmail.hzau.edu.cn</u>) Jingwen Li (<u>hopetes@outlook.com</u>) Xiaoping Guo (<u>xpguo@mail.hzau.edu.cn</u>) Shuangxia Jin (<u>jsx@mail.hzau.edu.cn</u>) Xianlong Zhang (<u>xlzhang@mail.hzau.edu.cn</u>)

SUPPLEMENTARY FIGURE LEGEND

Fig. S1. Multiple sequence alignment of phosphoenolpyruvate carboxylase amino acid sequence from *Gossypium raimondii* genome and *Gossypium hirsutum* accession in NCBI. GhPEPC1 (GenBank: AF008939.1) and GhPEPC2 (GenBank: EU032328.1). Conserved motifs and function domains were annotated with red underline. *: C3 signature Ala; \triangle : Phosphorylation site and exclusively belongs to plant PEPCs.

Fig. S2. Transmembrane helices (a) and signal peptide (b) of G. hirsutum phosphoenolpyruvate carboxylase 1 (*GhPEPC1***).** The predicted resulted showed that *GhPEPC1* might be a cytoplasmic solubility protein for non-transmembrane domains (a) and non-signal peptide (b).

Fig. S3. Agrobacterium-mediated genetic transformation of YZ1 with *GhPEPC1* gene.

Fig. S4. **Southern blotting analysis of transgenic plants GhPPC.** DNA Molecular Weight Marker II labeled with DIG was acted as positive control.

Fig. S5. GC-MS from the analysis of fatty acid component for cottonseed and leaves. (a) GC-MS profiles of a standard solution. (b) GC-MS profile of a sample, which contained a 0.2mg/ml Nonadecanoic acid internal standard.

Fig. S6. **Correlation analysis.** (a) Intercorrelations correlogram of all sample. The darker and more saturated the color, the greater the magnitude of the correlation. The upper triangle of cells displays the same information using pies. (b) Replicates Correlation Test between contrast (Null) and RNAi (PPC8) based on FPKM value.

Fig. S7. Volcanic figure showing the differentially expressed genes (DEGs) between the transgenic lines and null plants. The black dots represent no difference, red dots are up-regulated genes and blue dots are down regulated genes.

Fig. S8. The line graph show GhPEPC genes expression level (FPKM) between null (contrast) and PPC8 (RNAi). Only Gh_A09G0010 (*GhPEPC1*) gene expression level was significantly lower than in the null plants (P value < 0.05).
Fig. S9. Gene ontology analysis of DEGs. (a) Functional classification of differentially expressed genes, according to Gene Ontology Consortium.

Fig. S10. Pathway of carbon metabolism from KEGG metabolic pathway analysis. Up red arrow indicated the relation genes were up-regulation in DEGs, down blue arrow were opposite.

Fig. S11. **Determination of photosynthesis.** (a)The photosynthesis of transgenic lines in different areas. (b)The photosynthesis of Campus station transgenic lines in same day, but different period (morning, noon and afternoon).

Fig. S12. The phenotypic traits of transgenic lines and null plants. (a) Diagram of field trial in different areas. Wuhan (China), Ezhou (China) and Campus station (China). (b) Box plot showing the plant height distribution and (c) was seed morphology for stationary 10 grains cottonseed.

Fig. S13. The sequence length (a) and phylogenetic (b) of all DEGs. Most of DEGs length are less than 1kb. In addition, the DEGs were split into four distinct clusters based on phylogenetic analysis showed that many DEGs had relatively close genetic relationship and possibly divided from the same gene family, even the presence of functional redundancy.

Table S1. Summary of sequence read mapping.

Table S2. Primers used in this study for qRT-PCR.

Table S3. Chlorophyll content in transgenic lines of RNAi GhPEPC1.

	A	
Gr.0020061400.1 Gr.0046272100.1 Gr.0046272100.2 Gr.006001300.1 Gr.0086095300.1 Gr.0086187900.2 Gr.0136173500.2 Gr.0136173500.2 GhPEPC1 Zea_mays	. MATKINNSK LEKTARDAGIA FIVA KVSEDDKLVEYDALL LEFTDI LQDLHGED LETYQE CYELSA EYEK STPKKLEET GIVLTSLDEDGDSTU VAK FIKE VAKLAS FIVA MALANE VOTAY REF. IKLHKGDF ADE NAA HA ST SKSN. KWOKTARDAGIA KLVESKA KVSEDDKLVEYDALL LEFTDI LQDLHGED LETYQE CYELSA EYEK KINDEK KLEFT GIVLTSLDEGDSTU VAK FIKE VA MANLANE VOTAY REF. IKLHKGDF VDE NAA MA ST SKSN. KWOKTARDAGIA KLVESKA VSEDDKLVEYDALL LEFTDI LQDLHGED LETYQE CYELSA EYEK KINDEK KLEFT GIVLTSLDEGDSTU VAK FIKE VA MANLANE VOTAY REF. IKLHKGDF VDE NAA MA ST SKSN. KWOKTARDAGIA KLVESKA VSEDDKLVEYDALL LEFTDI LQDLHGED TETYQE CYELSA EYEK KINDEK KLEFT GIVLTSLDEGDSTU VAK FIKE VA MANLANE VOTAY REF. IKLHKGDF VDE NAA MA SKSN. KVEKTARDAGIA KLAFT SKSTANDEN VSEDDKLVEYDALL LEFTDI LQDLHGED TETYQE CYELSA EYEK KINDEK KLEFT GIVLTSLDEGDSTU VAK FIKE VA MANLANE VOTAY REF. IKLHKGDF VDE NAA MA SKSN. KVEKTARDAGIA KLAFT SKSTANDEN VSEDDKLVEYDALL LEFTDI LGDLHGED TETYQE CYELSA EYEK KINDEK LEFT SKULTSLDEGDSTU VAK FIKE VA MANLANE VOTAY REF. IKLHKGDF VDE NAA MA SKSTANDE VEKTARD AGLEK LAFA KVEEDDKLVEYDALL LEFT LILDING DI FETYQE CYELSA EYEK KINDEK ILEFT SKULTSLDEGDSTU VAK FIKE VAN TAN SKSTANDE INNEN KYEK KLAFT SKSTANDE VEKTARD VALKE SKSTANDEN SKS	137 137 133 133 115 77 139 139 139 139 139
Gr. 002:0061400.1 Gr. 0046272100.2 Gr. 0066001300.1 Gr. 0066001300.1 Gr. 008605300.1 Gr. 0086187900.2 Gr. 0136173500.2 Gr. 0136173500.2 GhPEPC1 Zea_mays	THE DIFFERENCE VELOCIENES DE VEDALEN COULD VERANETES VERSEN CONSERTED DE DESTINATIONE AUXIENTES DE LETTARUA VELONES DE VEDALEN COULD VERANETES VERSEN DE VOID VERANETES VERSEN DE VOID VERANETES VERSEN DE VOID VERSEN DE VERSEN D	277 277 273 273 273 254 216 279 279 279 279 279 278
Gr.0020061400.1 Gr.0046272100.2 Gr.0046272100.2 Gr.0066001300.1 Gr.0086095300.1 Gr.0086187900.2 Gr.0136187500.2 Gr.0136173500.2 Gr.013172500.2 GhPEPC2 GhPEPC1 Zea_mays	NA PLIC G SUM GO POONP UT PUUT DU CLARUMAANY YO BED NEED NUR COLR. UNA DEL HE SE, RDAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY YO BED NEED NUR COLR. UNA DEL HE SE, RDAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY YO BED NEED NUR COLF. UNA DEL HE SE, RADAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY YO BED NEED NUR COLF. UNA DEL HE SE, RADAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY TO CED NEED NUR COLF. UNA DEL HE SE, RADAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY TO CED NEED NUR COLF. UNA DEL HE SE, RADAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY TO CED NEED NUR COLF. UNA DEL HE SE, RADAKHYTEFWK U PNE. NA PLIC SUM GO POONP UT PUUT DU CLARUMAANY TO CED NUR COLF. UNA DEL HE SE	367 367 363 363 394 356 369 369 369 369 369
Gr.0022061400.1 Gr.0046272100.1 Gr.0046272100.2 Gr.0066001300.1 Gr.0086095300.1 Gr.0086187900.2 Gr.0136173500.2 Gr.0136173500.2 GhPEPC1 Zea_mays	IV RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 37, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUJ COTER 37, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL COTER 37, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL COTER 37, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE E STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE STREIN EOUS PIELON BLOCK SCORDETAD DY RULEOVERUL VICTOR 36, OV SHGI S DIE STREIN EOUS PIELON BLOCK SCORDETAD DY RULEONE FUNCTION FOR THE SCORDE SCORDETAD SCORDE SCORDETAD SCORDE SCORDETAD SCORDE SCORDETAD SCORDE SCORDETAD SCORDE S	431 431 427 427 534 493 433 433 427 433
Gr.002G061400.1 Gr.0046272100.2 Gr.0046272100.2 Gr.006001300.1 Gr.008095300.1 Gr.008187900.2 Gr.013173500.2 Gr.013173500.2 GhPEPC2 GhPEPC2 GhPEPC1 Zea_mays		560 560 556 556 674 636 562 562 562 556 556
Gr.002G061400.1 Gr.0046272100.1 Gr.0066072100.2 Gr.0066001300.1 Gr.0086095300.1 Gr.0086187900.2 Gr.0136187900.2 Gr.0136173500.1 Gr.013173500.2 GhPEPC2 GhPEPC1 Zea_mays		696 696 692 814 776 698 698 698 698
Gr.002G061400.1 Gr.004G272100.1 Gr.004G272100.2 Gr.006G001300.1 Gr.008G095300.1 Gr.008G187900.2 Gr.008G187900.2 Gr.013G173500.1 Gr.013G173500.2 GhPEPC2 GhPEPC1 Zea_mays	LE HGHLDEVOEKDE. MRAIN EENKET OFKEERET OFKEERE VEVELALAT DE LEVGRMNICSRESKREDSGIE SIRAIDUIT AUTORNE FLEVVALGE GAAP KHUIOKDIKNILHIOOHYN NEDEF RUT IDI VEMVPAKOD IE HGHLDEVOEKDE. MRAIN EENKET OFKEERET OFVEEREN VEVELALAT DE LEVGRMNICSRESKREDSGIE SIRAIDUIT AUTORNE FLEVVALGE GAAP KHUIOKDIKNILHIOOHYN NEDEF RUT IDI VEMVPAKOD IE HGHLDEVOEKDE. MRAIN EENKET OFKEERET OFVEEREN VEVELALUS, EINSTRAND EENKE SIRAIDUIT AUTORNE FLEVVALGE GAAP KHUIOKDIKNILHIOOHYN NEDEF RUT IDI VEMVPAKOD IE HGHLDEVOEKDE. MRAIN EINKI OON OVATE EYKET OFVEEREN VEVELALUS, EINSTRAND EENKE SIRAIDUIT AUTORNE FLEVVALGE GAAP KHUIOKDIKNILHIOOHYN NEDEF RUT IDI VEMVPAKOD IE HGHLDEVOEKDE. MRAIN EINKI OON OVATE EYKET OFVEEREN VEVELALUS EINSTRAND EINSTRAND EINSTRAND EINSTRAND EINSTRAND ILAT IE DEOER BE GROCKILE EINKI SOONTE OVEENE LAVIOENT OKSTRAND EINSTRAND	835 835 751 831 952 914 837 837 837
Gr.002G061400.1 Gr.0046272100.2 Gr.0066072100.2 Gr.0066001300.1 Gr.0086095300.1 Gr.0136173500.1 Gr.0136173500.2 GhPEPC2 GhPEPC1 Zea_mays	PGIALYDKLUSEELWSPEERELANDEELKDIG CLACHKELLEGEDY LKORLELEGEVITTIN COAYTEK REPPONNVKLREHTSKEINESSEADELUKINPESEVAPGLEETILUKKSIAAGONTG PGIALYDKLUSEELWSPEERELANDEELKOUGUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	969 969 751 965 965 965 964 750 971 965 970

Fig. S1.

SignalP-4.1 prediction (euk networks): GhPEPC1

Fig. S2.

a

GhPPC M 18 16 32 25 4 3 33 1 8 2 5 20 10 23

Fig. S5.

b

Fig. S6.

Fig. S7.

Fig. S9.

Fig. S10.

Fig. S13.

Sample	Reads	Clean	Mapped	Mapped	Aultiple Mapped Multiple Mapped		Pair Alignment	
		Reads	reads	Percent	reads	Percent	Rate	
Null-1	Reads_1	42310240	18658023	88.20%	2983161	16.00%	77 200/	
	Reads_2		17742882	83.90%	2740325	15.40%	//.30%	
Null-2	Reads_1	37065352	16456898	88.80%	2751402	16.70%	77.60%	
	Reads_2		15568456	84.00%	2510196	16.10%		
Null-3	Reads_1	36017112	15700687	87.20%	2701833	17.20%	77.00%	
	Reads_2		15023946	83.40%	2512054	16.70%		
PPC8-1	Reads_1	28632034	12751889	89.10%	3469177	27.20%	74.60%	
	Reads_2		12031429	84.00%	3155625	26.00%		
PPC8-2	Reads_1	34142702	15283226	89.50%	3645873	23.90%	76 2004	
	Reads_2	34142702	14494268	84.90%	3343077	23.10%	70.20%	
PPC8-3	Reads_1	35370716	15743603	89.00%	4188521	26.60%	75 500/	
	Reads_2		14970131	84.60%	3860822	25.80%	75.50%	

Table S1. Summary of sequence read mapping

Gene	Primer Sequence
GhACC-F	5' CAGGCTTGATGTTTGGAGGGA 3'
GhACC-R	3' TTTGGAAGTGCCTTTCGTTGAA 5'
GhPEPC1-F	5' GGCTCCGACTTCGTGATGCTTA 3'
GhPEPC1-R	3' TGGGATGTTCGCTCATACGAGGA 5'

			<u> </u>			
Address	Campus station			Wuhan		
	Moon (SPAD)	SD	P-value	Moon (SPAD)	SD	P-value
Lines 🔪	Mean (SFAD)	30	α =0.05	Mean (SFAD)	30	α =0.05
PPC1	40.89	0.4	**	40.55	0.68	*
PPC8	47.89	1.34	_	39.97	0.35	*
Nu11	49.09	0.35	_	46.29	0.95	_

Table S3. Chlorophyll content in transgenic lines of RNAi GhPEPC1