
Approximate Backbone Tree Algorithm

1: Input: Complete undirected graph: G ≡ (V (G), E(G))
2: Input: Distance attribute: d : V (G)× V (G)→ R+

3: Input: Distance threshold: δ
4: Input: Outlier tolerance: ρ
5: T := minimum spanning tree(G)
6: B := Graph({T.root}, ∅) . Init backbone tree with the root of MST
7: S := ∅ . Set of vertices close enough to the backbone
8: while |V (B)|+ |S| < (1− ρ)|V (G)| do
9: Vs := T.neighbours(V (B)) . Next branch need to start near current

backbone
10: R := T.induced subgraph(V (T) \ V (B)) . Create (disconnected) subgraph

by removing backbone vertices
11: P := maxv1∈Vs∩V (R),v2∈V (R)R.shortest path(v1, v2) . Longest shortest path

between starting set and non-backbone vertices
12: B.add path(P) . Add branch to backbone
13: S := {v ∈ V (G) \ V (B) | ∃vb ∈ V (B), d(vb, v) < δ}
14: end while
15: for u := B.backboneDFS() do . Depth-first-search through all backbone

vertices
16: for v := u.backbonechildren() do . Remove close contiguous backbone

nodes
17: if d(u, v) < δ then
18: if |{w ∈ V (G)\V (B) | ∃vb ∈ V (B)\ v, d(vb, w) < δ}| < ρ|V (G)| then
19: merge backbonevertices(u, v) . remove v from backbone
20: else
21: if |{w ∈ V (G) \ V (B) | ∃vb ∈ V (B) \ u, d(vb, w) < δ}| < ρ|V (G)|

then
22: merge backbonevertices(v, u) . remove u from backbone
23: end if
24: end if
25: end if
26: end for
27: end for
28: Output: B

1

