Sterilization Effects of Adult-targeted Baits Containing Insect Growth

Regulators on *Delia antiqua*

Fangyuan Zhou^{1,2,3}, Guodong Zhu¹, Haipeng Zhao¹, Zheng Wang⁴, Ming Xue^{*1},

Xianxian Li⁵, Huaqiang Xu⁵, Xiaodan Ma⁶, Yanyan Liu¹

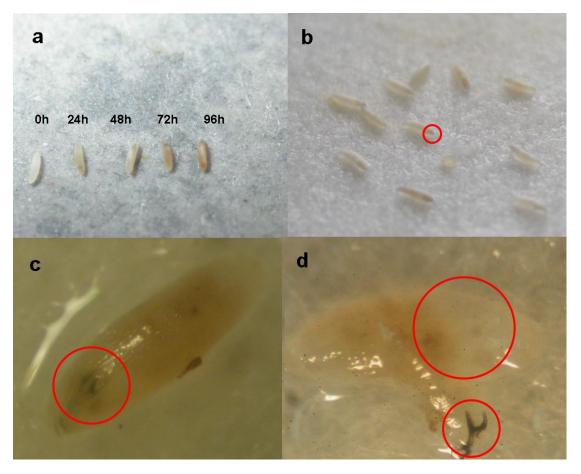
¹ College of Plant Protection, Shandong Agricultural University, Shandong Province, 271000, China.

² Non-point Source Pollution Remediation Laboratory, Ecology Institute, Shandong Academy of Sciences.

³ Shandong Provincial Key Laboratory of Applied Microbiology, Shandong Academy of Sciences.

⁴ Taierzhuang Agriculture Bureau Zaozhuang City, Shandong Province, 277400,

China.


⁵ Shandong Sino-Agri United Biotechnology Co.,Ltd.

⁶ Shenzhen Noposion Agrochemicals Co., Ltd.

* Correspondence: *E-mail:* xueming@sdau.edu.cn

1	Supplementary:
2	Figures, tables and supplementary methods for "Sterilization Effects of Adult-targeted
3	Baits Containing Insect Growth Regulators on Delia antiqua"

Figure S1 Embryo development in eggs when adult of *Delia antiqua* (Meigen) were treated with lufenuron

Embryo development in eggs when adult of *Delia antiqua* (Meigen) were treated with lufenuron. a) Embryo development in eggs of treated onion flies with lufenuron at 0h, 24h, 48h, 72h, and 96h after being laid. b) Embryo development in eggs of untreated onion flies. The hooked mouth part could be observed as it was marked in the red circle. c) The hooked mouth part of embryo in eggs. d) The hooked mouth part of embryo and egg shell from unhatched eggs laid by onion flies treated with lufenuron (The egg in Fig S1 d was dissected).

Figure S2 A cylinder-shaped glass chamber used in this paper

Turneticide	LC ₅₀ (95%CI	$(mg kg^{-1})$	y=a+bx		
Insecticide	Ŷ	8	Ŷ	ð	
Clothianidin	3.784 (2.799-5.672)	3.146 (2.472 - 4.125)	y=-1.010+1.747x	y=-1.350+2.712x	
Emamectin benzoate	4.505 (3.155-7.180)	2.873(1.948-3.931)	y=-0.871+1.333x	y=-0.697+1.521x	
Lufenuron	> 2000	> 2000	-	-	
Cyromazine	> 2000	> 2000	-	-	
Pyriproxyfen	> 2000	> 2000	-	-	

1 Table S1 Midgut toxicity of 5 insecticides to adults of *Delia antiqua* (Meigen) (72 h)

~

5 Table S2 Preoviposition period of female onion fly treated by selected IGRs.

Treatments		Dose(mg kg ⁻¹)			E	16	
Treatments	Control	100	500	1000	- F df	aj	Р
Lufenuron	6.86 ±0.38a	6.71 ±0.49a	7.14 ±0.38a	7.00 ±0.58a	1.111	(3,24)	0.364
Pyriproxyfen	6.86 ±0.69bc	6.29 ±0.95c	7.29 ±0.49ab	7.86 ±0.69a	5.909	(3,24)	0.004
Cyromazine	6.71 ±0.95c	7.57 ±0.53c	8.57 ±0.79b	10.43 ±0.79a	29.392	(3,24)	< 0.001

6 Within each line in the table above, values (days; mean \pm s.e., n=7) were analyzed with ANOVA,

7 and different letters denoted significant differences (Tukey's HSD test, p < 0.05).

. .

Chemical and biological materials

20	All insect growth regulators (IGRs) used in this article were technical-grade
21	chemicals. Lufenuron
22	[(RS)-1-[2,5-dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]-3-(2,6-difluorobenzo
23	yl)urea], cyromazine [N-Cyclopropyl-1,3,5-triazine-2,4,6-triamine] and pyriproxyfen
24	[4-phenoxyphenyl (RS)-2-(2-pyridyloxy)propyl ether] were provided by the
25	Shandong Institute for the Control of Agrochemicals, Ministry of Agriculture
26	(ICAMA).
27	D. antiqua adults originally collected in garlic fields in year 2000 in Fanzhen,
28	China. Flies were reared at 21 \pm 0.5 °C, 50-60% RH, on a 16:8 h light: dark
29	photoperiod. Newly emerged adults were placed in 25 \times 25 \times 25 cm wood-profile
30	cages. Sterile absorbent cotton ball soaked with milk, 5% sucrose water solution and
31	water were put into the cage to provide food for the onion flies. In addition, an
32	ovipositional device, a 30-mm petri dish bottom filled with sand into which a piece of
33	garlic was inserted vertically, was put inside the cage ¹ . The sand and the piece of
34	garlic were put into water each day and onion fly eggs would float on surface of water,
35	thus these eggs could be collected with a 400-mesh filter.
36	
37	The treatment method of onion flies
38	
39	The treatment procedure of onion flies used in this article is similar with the

40	method in DPIL, which has been standardized for more than 30 years and has been
41	used to develop WHO standard tests for determining resistance in M . domestica ² .
42	Flies to be used in experiments were obtained from pupae screened by mesh
43	(Sieve size, $\emptyset = 2 \text{ mm}$). Newly emerged flies were sexed and put into cages
44	respectively, and provided with water, 5% sucrose solution and milk. The flies were
45	starved for 24 h before the test. Lufenuron and pyriproxyfen were dissolved with
46	acetone, and cyromazine, methanol (a few drops of distilled water was added into
47	methanol to promote cyromazine solution in methanol) as its solubility is low in
48	acetone. Granulated sugar was impregnated with insecticide by adding 10 mL of the
49	insecticide in an acetone or methanol solution to 20 g sugar and stirring while the
50	acetone or methanol evaporated. Five pairs of flies were put into a cylinder-shaped
51	glass chamber (open at both ends, L=12 cm, \emptyset =6 cm, supplementary, Fig. S2 online)
52	with 0.5 g of insecticide-treated granular sugar in a small petri dish as the only food,
53	and access to water. The chamber was covered at both sides with mesh. Each chamber
54	was regarded as one replication. For the control group, only acetone or methanol was
55	use to treat the sugar as no different effects between methanol or acetone treatment
56	were observed (data not shown). The tests were carried out at 21 \pm 0.5 °C, 50-60%
57	RH, on a 16:8 h light: dark photoperiod. The insecticide-treated granular sugar was
58	not replaced during the 3-day treatment, and it was replaced with foods after the
59	treatment was over. An ovipositional device was also put into the chamber after
60	treatment (supplementary, Fig. S2 online).

62 References

63

64	1	Harris, M. O., Keller, J. E. & Miller, J. R. Responses to n-dipropyl disulfide by
65		ovipositing onion flies: Effects of concentration and site of release. J. Chem.
66		<i>Ecol.</i> 13 , 1261-1277 (1987).
67	2	Keiding, J. Review of the global status and recent development of insecticide
68		resistance in field populations of the housefly, Musca domestica (Diptera:
69		Muscidae). Bull. Entomol. Res. 89, S9-S67 (1999).