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SUPPORTING INFORMATION

Bath transformation

In this section the transformation process of including several vibrational modes from the bath explicitly into the
system Hamiltonian is presented. The logic proceeds as follows: first we start with the bath decomposition we want
to achieve, that is a few explicit modes and many other modes, with bilinear interaction between the two. Then we
transform the bath Hamiltonian into the normal modes, which present non-interacting modes. In this basis we present
the form of the bath Hamiltonian in the system ground and excited state as is usual in the spectroscopical treatment.
Then we invert the transformation, insert the two kinds of modes, and derive the new form of the system-bath
interaction. The result presents the two terms of system bath interaction discussed in the main text, one coupling the
bath modes to the electronic degrees of freedom, the other to the prominent vibrational coordinate.

We start with the vibrational part of the total Hamiltonian separated into the system part (a few prominent modes)
and the environment part (typically many more modes):
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Here Ωk and ωn is the mode frequency, Pk, pn and Qk, qn are the canonical coordinates. The interaction between the
modes is asumed to be bilinear:
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B =

∑
kn
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The bath Hamiltonian HB = HS
B +HE

B +Hint
B can be always transformed into the vibrational normal modes[1]:
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The excited state is displaced by dξ with respect to the ground state. The excited state bath can be expressed by the
ground state bath as
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Here λe is usually called the reorganization energy and the linear coupling to the bath modes qξ is apparent now.
This form of the bath is typically used for describing the spectroscopically relevant energy-gap ∆V = H(e) − H(g)

fluctuations. Using the backward transformation,

qξ =
∑
n

a(ξ)n qn +
∑
k

b
(ξ)
k Qk, (5)

we get for the excited state bath
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Here Dn =
∑
ξ ~ωξdξa

(ξ)
n and Dk =

∑
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(ξ)
n are the new potential shifts in the excited state. Now we define

new quantities such as the excited state vibrations equilibria
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the total reorganization energy
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, (8)

and the new bath operators for the ’electronic’ environment bath
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∑
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qn (9)

and the ’vibrational’ environment bath

Φ
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κknqn. (10)

Using these quantities, the total Hamiltonian of one two-level system can be written as
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This is the Hamiltonian of Eqs. (1) and (2) in the main text. A similar form of interaction Hamiltonian with the two
baths was used by Novoderezhkin et al.[2].

Vibronic basis expressions

The system-bath interaction terms are transformed:
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In the vibronic basis, the dipole transitions to the one-exciton block will be given by the transformation coefficients
and the vibration wavefunction overlap:
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Dynamics of the vibronic wavepacket - projection

To get further illustration of the relaxation of the vibronic wavepacket in the lower state, we can calculate a projection
of the wavepacket on the abscissa connecting the minima of the potential energy surfaces of excited state 1 and 2.
The resulting dynamics can be found in Fig. S1.
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Figure S1. Vibronic wavepacket dynamics projected on the abscissa between the state 1 and 2, see Fig. 1 for definition of the
coordinates.
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Figure S2. Comparison of the ’Secular’ and Full Redfield dynamics of the system, ∆E = 340 cm−1

Role of secular approximation

Here in Fig. S2 we give the detailed comparison of the system dynamics for the full and secular Redfield description.
In the secular case, where there is no interplay between the vibronic populations and coherences, the population
dynamics is given by rate equations only. The ’wiggles’ on the vibronic populations are therefore characteristic for the
coherences affecting their dynamics. The most pronounced difference is thus the significantly faster transfer between
sites in the secular case.
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