Appendix 1: Patient data
Appendix table 1 summarises the patient data used in the study.

Appendix table 1: Clinical trials making up the dataset.

Trial Patients Primary Radiotherapy  Radiotherapy dose- Concurrent
available disease site technique fractionation chemotherapy

COSTAR (Phase 78 Parotid gland Unilateral; 65 Gy / 30 # (definitive RT), No

I1I, multicentre; conventional, 60 Gy / 30 # (post-

CRUK/08/004) IMRT operative RT)

PARSPORT 71 Oropharyng, Bilateral; 65 Gy / 30 # (definitive RT), No

(Phase 111, hypopharynx conventional 60 Gy / 30 # (post-

multicentre; IMRT operative RT)

CRUK/03/005)

[1]

Dose Escalation 30 Larynx, Bilateral; IMRT 67.2Gy /28#,63Gy/28# Yes

(Phase II, single hypopharynx

centre) [2]

Midline 117 Oropharynx Bilateral; IMRT 65 Gy / 30 # (definitive RT), Yes
(Phase II, single 60 Gy / 30 # (post-
centre) [3] operative RT)

Nasopharynx 36 Nasopharynx Bilateral; IMRT 65 Gy / 30 # (definitive RT), Yes
(Phase II, single 60 Gy / 30 # (post-
centre; operative RT)

NCT02149641)

Unknown 19 Unknown Bilateral; IMRT 65 Gy / 30 # (definitive RT), Yes
Primary (Phase primary 60 Gy / 30 # (post-

11, single operative RT)

centre;

NCT02112344)

Detailed descriptions of the patients included and treatment planning and
delivery protocols can be seen in the trial references. IMRT - intensity-modulated
radiotherapy; # - fractions; RT - radiotherapy; Unilateral - treatment delivered
to ipsilateral parotid bed only; Bilateral - treatment delivered to ipsilateral and
contralateral mucosa of relevant subsite (e.g. nasopharynx, oropharynx or
larynx).

Unilateral versus bilateral irradiation was not explicitly included as a covariate
in the models since it correlates perfectly with parotid gland primary disease
site.

The radiotherapy treatment planning techniques are detailed in [1,4,5] and the
COSTAR trial (CRUK/08/004) protocol. No oral cavity dose constraints were
used in treatment planning.

Concurrent chemotherapy was administered in two cycles, on day 1 and day 29
of radiotherapy.



Appendix 2: Oral cavity contouring

Appendix figure 1 shows an example of the oral cavity contouring approach
used.

Appendix figure 1: Axial (left), sagittal (top right) and coronal (bottom right)
views of an example of the oral cavity structure used.



Appendix 3: In house software

Software for reading in the DICOM RT data and calculating the radiotherapy dose
metrics was developed using the Python (version 2.7.9) programming language
[6] and the NumPy (version 1.9.2) [7], SciPy (version 0.16.1) [7], Matplotlib
(version 1.4.3) [8], Seaborn (version 0.6.0) [9] and PyDicom (version 0.9.9) [10]
modules to allow novel dose metrics (which are not calculated by any of the
treatment planning systems) to be calculated from the dose distributions.
Statistical analysis was performed using the Pandas (version 0.17.1) [11] and
scikit-learn version (0.17.1) [12] Python modules.



Appendix 4: Hyper-parameter tuning and internal validation

Model hyper-parameter tuning was carried out using a 100 iteration shuffled
stratified cross-validated (with a train/test split of 80/20) grid-search. The grid-
search method involves fitting models (including covariate transformation to
standardised scores within each cross-validation fold) using every combination
of hyper-parameters and measuring their performances (in this case using AUC).
The combination of hyper-parameters with the highest AUC (in this case mean of
100 cross-validation iterations) was selected for the model. The possible hyper-
parameters over which the cross-validated grid-searchers were performed were:

e PLR: regularisation = [LASSO (L1), ridge (L2)]; inverse regularisation strength
(G)=[0.001,0.01, 0.1, 1.0,10.0, 100.0, 1000.0].

e SVC: kernel = [linear, radial basis function]; C = [0.0001, 0.001, 0.01, 0.1, 1.0,
10.0, 100.0, 1000.0]; kernel coefficient for radial basis function =[0.0001, 0.001,
0.01, 0.1, 1.0, 10.0, 100.0, 1000.0].

e RFC: number of estimators = 1000; maximum depth = [5, 10, 15, 20]; maximum
features = [number of features, number of features/2, square root of number of
features].

Internal validation used a 100 iteration shuffled stratified cross-validation, with
a train/test split of 80/20. The internal cross-validation used a “nested” design
incorporating covariate transformation to standardised scores and hyper-
parameter tuning (with 5-fold cross-validation), within each iteration of the
internal validation cross-validation. This was done to prevent “data leakage”
(unexpected additional information in the training data), which can lead to
biased overestimates of how well the model is likely to generalise to other data.

During model fitting the outcome classes were weighted proportionally to the
inverse of their class frequencies in the training data to account for the fact that
the number of patients experiencing severe and non-severe mucositis was
unequal (in part due to the strategy for handling missing data). Higher class
weights result in less penalisation for that class and a greater “incentive” for the
model to correctly classify it.



Appendix 5: Model diagnostics using learning curves

An important part of statistical modelling is diagnosing why a model does not
have perfect predictive ability and, hence, how it can be improved in the future
(“model diagnostics”). Model diagnostics were performed using learning curves.
The training and cross-validation AUC scores were plotted as a function of the
number of patients in the training set. The shapes of the training and cross-
validation learning curves were used to infer whether the models displayed
underfitting or overfitting and, hence, identify strategies to improve model
performance in the future. Appendix figure 2 shows the learning curves for the
PLRstandara model.

1.0 4 -

06 -
O
-
<
(&)
@]
@
04 H -
02 H -
—&— Training score
—&— Cross-validation score
0.0 T T T T

0 20 40 60 80 100
Number of patients

Appendix figure 2: Learning curves to diagnose suboptimal performance the
PLRstandara model. For small numbers of training cases (patients) the training
score is high and decreases as more cases are added and there is less over-fitting.
The cross-validation scores, indicating how well the models generalise to unseen
data, start low and increase slightly. The training and cross-validation curves
converge and level off indicating that adding additional training cases will not
improve model performance.

The PLRstandara training and cross validation learning curves converge at a AUC
substantially less than 1.0, indicating that they underfit the data (with a model
that does not fully capture the relationship between treatment and toxicity).
Therefore, the PLRstandara could be improved by adding additional or more
appropriate features, using more sophisticated models or decreasing the amount
of regularisation. They imply that just adding additional patients (which would
be a suitable strategy if the learning curves did not converge, suggesting the
models featured was overfitting to noise) will be inadequate to improve



predictive performance. This suggests that having to exclude a large number of
patients from the analysis due to missing data will most likely not have had a
large detrimental effect on model performance. Since the more complex SVC and
RFC models did not improve model performance and the cross-validated grid
search allowed for varying amounts of regularisation, it is likely that improving
the features used to describe the treatments or including factors not hitherto
considered would be the best approach to improving the model. To the best of
our knowledge, our study is the first in radiation oncology outcomes modelling
to apply learning curves in order to attempt to establish how to enhance model
performance. We recommend that this technique be employed in future
predictive modelling studies in radiation oncology.



Appendix 6: Results of statistical analysis including patients with non-
consecutive missing mucositis measurements

Appendix table 2 shows the discriminative abilities of the models generated by
repeating the modelling of peak acute mucositis with the addition of patients
with non-consecutive missing mucositis measurements (which led to 245
patients (Grade 0 - 0 patients, Grade 1 - 16 patients, Grade 2 - 95 patients, Grade
3 - 134 patients) being included).

Appendix table 2: Discriminative abilities of models using 245 patients including
patients with non-consecutive missing mucositis measurements.

Model Hyper Mean Mean Mean Mean Mean
parameters AUC log Brier calibration calibration
(s.d.) loss score slope (s.d.) intercept
(s.d.) (s.d) (s.d.)

PLRstandara regularisation 0.68 0.66 0.23 8.6(89) -4.1(4.4)
= LASSO, C = (0.07) (0.03) (0.01)
0.1

SVCstandara Kkernel = 0.68 - - - -
radial basis (0.07)
function,
gamma =
0.01,C=0.1

RFCstandara max depth = 0.72 0.63 0.22 4.1 (1.9) -2.0 (1.1)
20, max (0.07) (0.07) (0.03)
features =
square root

PLRspatiai  regularisation 0.68 0.66 0.23  8.1(8.7) -3.9 (4.4)
= LASSO, C = (0.07) (0.03) (0.01)
0.1

SVCspatial kernel = 0.67 - - - =
radial basis (0.08)
function,
gamma
0.0001, C
10

RFCspatial max depth
5, ma
features =
square root

071 062 022 43(18) -2.1(1.0)
(0.06) (0.06) (0.03)

<

PLR - penalised logistic regression; SVC - support vector classification; RFC -
random forest classification; s.d. - standard deviation; C - inverse regularisation
strength.

Including the additional patients did not lead to improved discrimination (it led
to a small decrease in discrimination in the PLR and SVC models) supporting the
suggestion from the learning curves analysis (appendix 5) that excluding
patients due to missing toxicity data is unlikely to have decreased discriminative
ability. It is important to note that there is uncertainty in the toxicity outcome



measures for the patients with missing toxicity data, which is a limitation of the
evaluation of the discrimination. For these reasons it was decided that models
generated excluding the patients with peak toxicity less than grade 3 having
missing toxicity measurements (the models in the main manuscript) should be
preferred.



Appendix 7: Statistical modelling of the duration of severe mucositis

Elastic net regression (linear regression with combined LASSO and ridge priors
as the regulariser; EN) and random forest regression (RFR) were used to
determine associations between the covariates and the duration of severe
mucositis to take advantage of the longitudinal nature of the toxicity data. The
outcome variable for the regression modelling was the number of weeks that the
patients were scored as having grade 3 mucositis. For patients to be included in
this analysis they had to have a complete set of toxicity measurements. This was
true of 80 patients. The model hyper-parameters were tuned (using R? for
scoring) and the odds ratios (for EN) and feature importance (for RFR)
bootstrapped in the same manner as detailed for the modelling of the peak grade
of mucositis. The possible hyper-parameters over which the cross-validated grid
searchers were performed were:

e EN: penalty term multiplier constant (a) = [0.01, 0.1, 1.0, 10.0, 100.0]; elastic
net mixing parameter (L1 ratio) = [0.25, 0.5, 0.75].

e RFR: number of estimators = 1000, maximum depth = [5, 10, 15, 20]; maximum
features = [number of features, number of features/2, square root of number of
features].

The odds ratios and feature importance measures for the ENstandard, ENspatial,

RFRstandara and RFRspatiai models are shown in appendix figures 3, 4, 5 and 6,
respectively.
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Appendix figure 3: Bootstrapped (2000 replicates) odds ratios for ENstandard
model. Whiskers show 95 percentiles (non-normal distributions).
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Appendix figure 4: Bootstrapped (2000 replicates) odds ratios for ENspatiat model.

Whiskers show 95 percentiles (non-normal distributions).
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Appendix figure 5: Bootstrapped (2000 replicates) feature importance measures

for RFRstandara model. Whiskers show 95 percentiles (non-normal distributions).
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Appendix figure 6: Bootstrapped (2000 replicates) feature importance measures
for RFRspatias model. Whiskers show 95 percentiles (non-normal distributions).

None of the covariates were significantly associated with the duration of grade 3
mucositis in the EN models. In the RFR models the covariate most strongly
associated with the duration of severe mucositis was V180, with the feature
importance increasing with increasing dose up to V180. This provides further
support for aiming to minimise the volume of oral cavity receiving intermediate
and high doses rather than mean dose in RT treatment planning. The spatial dose
metrics have a relatively high feature importance in the RFRspatiat model and age
has a higher high feature importance than the other clinical covariates in both
RFR models, but this may be due to the tendency of this measure to be biased
towards the covariates having a large number of unique values [13], which is the
case for the spatial dose metrics and age, especially compared to the binary
covariates. eta002, describing the spread of the dose in the superior-inferior
direction, is the spatial dose metric with the highest importance.



Appendix 8: “Conventional” univariate and multivariate logistic regression
analysis

Appendix table 3 shows the results of the univariate and multivariate
(unpenalised) logistic regression analyses. Covariate data were not transformed
to standardised scores for these analyses.

Appendix table 3: Odds ratios and confidence intervals for univariate and
multivariate logistic regression analyses.

Univariate logistic Multivariate

regression logistic regression

Odds 95% Odds 95%

ratio confidence ratio confidence
Covariate interval interval

definitiveRT  0.50 0.36-2.30 041 2.99 x 108

7.33
male 1.61 049-198 1.74 0.25-21.1
age 0.99 097-1.03 099 0.89-1.08
1.94 0.51-199 047 430x 103 -
indChemo 7.94
noConChemo 0.47 049-198 0.16 6.22x107 -
18.0
cisplatin 2.26 0.50-2.10 0.76 1.26 x 10> -
326
carboplatin 1.49 0.29 - 1.09 0.45 1.10 x 105 -
x 104 7.40 x 104
cisCarbo 0.72 0.19 - 423 0.14 7.70x107 -
x 103 630
hypopharynx 1.31 0.36-544 494 8.64x103 -
/larynx 3.75x 105
oropharynx 3.47 049-198 0.26 2.62x10° -
43.9
nasopharynx 1.93 0.36-4.00 046 237 x10° -
2.38x 104
unknown 0.35 0.27 - 1.02 6.74x 5.18x1011 -

primary x 104 103 21.8




parotid 0.18 048-2.62 188 4.00x 104 -
4.37 x 103

V40 1.00 097-1.02 0.76 0.15-1.39

V80 1.02 0.98-1.02 1.06 0.86-1.67

V120 1.02 0.99-1.01 1.22 1.00-2.37

V160 1.03 0.99-1.01 120 0.67-2.27

V200 103 099-1.01 092 0.60-103

0.57 - 3.54 0.04-292x
V240 1.07 x 10100 0.84 1014

1.75x 4.20x107-
Moot 1.28 0.01-24.8 109 293 x 1032

1.52x104% 7.45x 4.79x10-58 -

Toos 0.1 ~200 1015 6.10 x 10*

Mo11 454x 921x107 1.77x 1.07x1013-




104 -3.49x105 10° 3.18x103%7

9.18x 103 5.19x 7.51x102 -

ezt e - 676 104  1.18x 1010
441x 199x105 3.38x 3.00x10°5-
Toso 104 ~1.13x106 101  1.57 x 1052
-29 _
MN100 036  002-363 S/>x 196x10

104 1.35x 1017

3.55x10°% 8.50x 3.06x104 -

Tt 0.18 -594x103 1012 1.42x1018
453 %106 1.73x 10728 -
JIEe 58.5 “164x107 290 ge2x10%
-18
\ 1.26 x 2'325)1‘)1(0 527x 5.52x 10+ -
111 - L. -
105 Loi 107  5.45x10°
7.56x 109 -
M200 0.66 0.01-636 1.21 1.08 x 1010
12 0.01-2.56 353x 698x1018-
1300 ' x 103 103 1.16x1028
5.12 x 1020 —
intercept : : Ll 1.11x10¢

The 95% confidence intervals are the 95 percentiles of the bootstrapped (with
2000 replicates) odds ratios.

On univariate analysis none of the covariates were significantly associated with
severe mucositis. On multivariate analysis V120 was significantly associated with
severe mucositis.

The AUC for the multivariate logistic regression model was 0.62 (standard
deviation = 0.10) on stratified shuffle split internal cross-validation with 100
iterations.



Appendix 9: Dose-volume data

Appendix figure 7 shows the average DVH for each mucositis Grade.
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Appendix figure 7: Summary of dose-volume data for oral cavity grouped by
peak mucositis Grade. The lines represent the group medians and the error bars
represent the 95 percentiles.



Appendix 10: Correlated RT dose data

Appendix figure 8 shows the spearman correlation matrix of the model variables.
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Appendix figure 8: Spearman correlation matrix of the model variables. The
colour scale shows the spearman correlation coefficients between the model
covariates. definitiveRT - definitive radiotherapy (versus post-operative
radiotherapy); indChemo - induction chemotherapy; noConChemo - no
concurrent chemotherapy; cisCarbo - one cycle of cisplatin followed by one cycle
of carboplatin; Vx - volume of organ receiving x cGy of radiation per fraction;
etaxyz - 3D moment invariant of order x in the left-right direction, y in the
anterior-posterior direction and z in superior-inferior direction; severe acute
mucositis - peak grade of acute mucositis (severe = 1, non-severe = 0).

The dose-volume-based metrics are highly correlated. Logistic regression
assumes covariates are independent so the regression coefficients (and odds
ratios) of correlated covariates are unstable. This can lead to erroneous
inference of the relationship between the covariates (dose-volume metrics) and
outcome (mucositis severity) [14]. The fact that the odds ratios for some of the



dose covariates are less than 1.0, indicating a negative correlation between dose
and toxicity, and that neighbouring dose-volume metrics do not have similar
odds ratios (which are counterintuitive), highlights the limitations of attempting
inference from logistic regression models incorporating correlated covariates.
We, therefore, stress that logistic regression models using correlated RT dose
metrics, whilst potentially suitable for predicting patient toxicity outcomes (aim
i), should not be used to infer which dose levels are driving that toxicity (aim ii).
RFC models are robust to correlated covariates. Therefore, they are more
suitable than PLR for inferring associations between correlated RT dose metrics
and toxicity. However, it should be noted that, the RFC feature importance
measures tend to be biased towards the covariates having the greatest number
of unique values [13]. This could explain the relatively high feature importance
given to the spatial dose metrics in the RFCspatia model.
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