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Supplementary Material 

Methods 

Participants 

Participants were excluded if they demonstrated clinical evidence of unstable medical or 

psychiatric illness, alcohol or drug abuse within the past year, learning or developmental 

disability requiring special education, history of another neurological condition, inability to 

undergo MRI scanning, and use of prescription antipsychotic medications within the past six 

months or phenothiazine-derivative antiemetic medications more than three times per month.  

Participants for this study were selected from a larger dataset of 32 gene-negative controls and 

52 gene-positive prodromal Huntington’s participants.  The final sample was selected to 

minimize group differences in age while maintaining an equivalent number of subjects in each 

group. 

All participants were administered the Motor Assessment section of the Unified 

Huntington’s Disease Rating Scale (UHDRS), which contains 31 items that assess chorea, 

bradykinesia, rigidity, dystonia, and oculomotor function on a four-point scale (0 = normal; 

4=greatest impairment).  The UHDRS Motor Score is the sum of these items.   

Disease Burden Score 

The CAG-Age Product (CAP) score is a disease burden score (DBS) that purports to index the 

cumulative toxicity of exposure to the CAG expansion. As discussed by Ross and colleagues 

(Ross et al., 2014), CAP is consistent with the general form of DBS, which is DBS = age × 

(CAG - L), where L is a constant used by different researchers. Based on the validation study of 

Zhang et al. (Zhang et al., 2011) with an earlier PREDICT-HD data cut, the constant was 

estimated as L = 33.66. This is similar to the constant proposed several year earlier by Penney et 

al. (Penney, Jr. et al., 1997), L = 35.50, and used in other longitudinal studies as an index of 

progression level (Tabrizi et al., 2013). It can be shown that the aforementioned values of L will 

produce similar DBS, so there is an approximate equivalence among the different scores. Thus, 

the PREDICT-HD CAP score can be compared to other DBS allowing for direct comparisons 

among studies and similar indexing of progression level.  CAP scores can be converted to a 

scaled score based on a 5-year probability of diagnosis.  Cut-offs for the three CAP groups were 

based on an optimization algorithm from the larger PREDICT-HD cohort (N > 1,000). Based on 



Page 2 
 

this stratification the estimated time to diagnosis is >12.78 years, 12.78 to 7.59 years, and <7.59 

years for the Low, Medium, and High groups, respectively.   

 When studying only gene expanded people, grouping is generally not needed and not 

desirable. Treating CAP as a continuous variable rather than a grouping variable will tend to 

increase statistical power and allow for the use of regression methods. The correlations we report 

between CAP score and functional imaging measures were computed among the subsample of 

gene positive individuals.  The goal was to directly assess the magnitude of associations between 

disease burden and connectivity metrics for those individuals for which disease burden can be 

defined. We argue that the results from both the grouping approach and the continuous approach 

are internally consistent. CAP indeed is a continuous variable, but it is undefined for negative-

gene expanded people, for which CAG length does not index disease burden.  Incomplete 

penetrance notwithstanding, CAG = 36 is treated as the threshold for defining negative gene 

expanded and positive gene expanded groups. Thus, whenever negative and positive gene 

expanded people are studied it is natural to compare them at the group level.  An important 

caveat is that not all gene positive people are alike in our sample, because they entered the parent 

study with different levels of progression. To account for the progression variability and still 

maintain the group concept, the gene positives are divided into low/medium/high progression 

groups based on the algorithm discussed by Zhang and colleagues (Zhang et al., 2011).  The 

grouping has been used in numerous studies of prodromal Huntington’s disease (e.g., Harrington 

et al., 2012; Paulsen et al., 2013; Rao et al., 2014; Matsui et al., 2014; Epping et al., 2013; 

Williams et al., 2015).  In our study, we sought to account for natural aging by including gene 

negative individuals and to study gene-positive progression level. It was important to examine 

which gene-positive progression groups showed differences relative to the gene negatives to 

better understand how Huntington’s disease progresses as indexed by imaging markers.  

 When studying only gene expanded people, grouping is generally not needed and not 

desirable. Treating CAP as a continuous variable rather than a grouping variable will tend to 

increase statistical power and allow for the use of regression methods. The correlations we report 

between CAP score and functional imaging measures were computed among the subsample of 

gene positive individuals.  The goal was to directly assess the magnitude of associations between 

disease burden and connectivity metrics for those individuals for which disease burden can be 

defined.  
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Neuroimaging Protocol 

Quality Assurance 

Both sites used identical scanners and a comparison of phantom data between the sites indicated similar 

image quality and signal-to-noise ratio.  Frequent quality assurance scans were also performed at each 

institution to ensure that imaging data were free of scanner artifacts and were comparable across sites.  

For each of the functional connectivity measures, we conducted ANOVAs to test for the main effect of 

site.  Scanner site was not significantly associated with any of the measures (uncorrected for multiple 

comparisons).   

Motion 

Several procedures were used to carefully screen rs-fMRI scans for motion.  Screening involved 

visual inspection of the rs-fMRI time series and subsequent correlation maps.  Inspection 

included meticulous assessments of the each individual rs-fMRI scan to screen for head 

movements during the time series and potential motion-related artifacts such as rings of 

correlation around the outside of the head, correlation in the ventricles, connectivity in only part 

of the brain, and rapid correlation pattern changes from slice to slice.  AFNI 3dvolreg (Cox, 

1996) was used to retrospectively correct volumetric-level motion.  The 3dvolreg program 

realigns subsequent volumes of time series data to a base volume and outputs volumetric motion 

parameters for rotation and displacement of each volume to the base volume.  These volumetric 

parameters were then trigonometrically converted to voxel-level displacement and a model of the 

signal fluctuations was regressed from the time series at each voxel (Bullmore et al., 1999). 

ANOVAs demonstrated that the groups did not differ in mean [Negative: 0.31 mm (0.11); Low: 

0.33 mm (0.12); Medium: 0.29 mm (0.08); High: 0.40 mm (0.17)] or maximum [Negative: 0.70 

mm (0.24); Low: 0.71 mm (0.19); Medium: 0.66 mm (0.25); High: 0.86 mm (0.35)] peak-to-

peak displacement during the rs-fMRI scan (p > 0.163).   

Resting State Image Analysis 

Post processing of the rs-fMRI data included the removal of the first 4 volumes of the time 

series. Physiologic noise was estimated using PESTICA (Beall and Lowe, 2007) and was 

regressed out at the voxel level using RETROICOR (Glover et al., 2000). Using the BOLD-

weighted time series data, PESTICA generates two fast-sampled signals matching the periodicity 

of the heart and respiration cycles. These signals can then be used in the model-based correction 

with the same efficiency as if the pulse and respiration had been recorded in parallel. We 
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consider this the most effective method of reducing individual and group effects associated with 

physiologic noise. 

Cortical and Subcortical Parcellation 

To derive measures of functional connectivity, we subdivided the cortical surface and subcortical 

structures into parcels or nodes.  The choice of a parcellation is important for accurate mapping 

of interregional functional connectivity, as imprecise node definition can influence the observed 

network measures (Zalesky et al., 2010). Clinical studies commonly use anatomical atlas-based 

parcellations (e.g., Automatic Anatomical Labeling) that have a relatively coarse resolution (90 

regions) and do not necessarily map to the underlying functional-brain organization (Fornito et 

al., 2010).  The present study used a medium-density resolution of 300 nodes, which was derived 

using a spatially constrained clustering method described by Craddock and colleagues (Craddock 

et al., 2012) that subdivides regions into similarly sized parcels while optimizing the 

homogeneity of correlations among voxels within each node.   

 A group parcellation of 300 regions was based on the 16 HD negative subjects.  First, a 

grey-matter mask was created from the average anatomical image and was restricted to areas 

where all subjects had adequate resting-state data. Resting time courses in individual 

hemispheres were resampled to 2mm cubic voxels and parcellated into 150 clusters in each 

hemisphere separately using two-level t-corr clustering (Craddock et al., 2012).  This method 

attempts to create similarly sized parcels with high homogeneity of correlations among voxels.  

A group parcellation approach was desirable to compare functional connectivity in specific 

regions across groups of subjects.  However, our main effect tests of group for graph-theory 

derived measures were largely reproducible when we conducted individual subject parcellations 

using the current method (Craddock et al., 2012) and another approach described by Blumensath 

and colleagues that maximizes homogeneity without the constraint of similar parcel sizes 

(Blumensath et al., 2013) (Supplementary Table 1).  



Page 5 
 

Network Topology Analysis  

Average time courses from each region were then extracted and a 300 x 300 matrix of t-statistics 

for the Pearson correlation was created for each subject. A Gaussian fit restricted to the full-

width at half-maximum (FWHM) of the t distribution of the correlations was used to create 

connectivity z-scores, which became the weighted connectivity matrix used in the between-

subject analyses (Lowe et al., 1998). 

 Using the Brain Connectivity Toolbox, the clustering coefficient, global efficiency, and 

rich-club coefficient weighted measures were computed as a ratio of each measure to the mean 

value derived from 100 random networks (Rubinov and Sporns, 2010), because measures of 

network organization should not be interpreted in isolation. For instance, an increase in a 

measure such as the global efficiency is not necessarily beneficial, especially if it is accompanied 

by a simultaneous reduction in other measures, such as the clustering coefficient. Indeed random 

graphs have very high global efficiency, but very low clustering coefficients, reflecting an 

imbalance between integration and segregation.  Random networks were constructed using 

null_model_und_sign.m, an algorithm that preserves node degrees and connection weights, and 

closely approximates node strengths, thereby allowing for more rigorous hypothesis tests on 

weighted networks (Rubinov and Sporns, 2011).   

Structural MRI Analyses of Brain Morphometry 

MRI scans were analyzed to examine group differences in regional cortical volume and thickness 

as well as subcortical volumes.  Cortical volume and thickness were derived from the Desikan 

atlas parcellation method (Desikan et al., 2006) incorporated in FreeSurfer 5.1 software (Fischl 

et al., 2004), which demonstrates good test-retest reliability across scanners and sites (Han et al., 

2006).  We analyzed bilateral regional volume/thickness in homologous areas, since hemispheric 

asymmetries have not been noted across multiple studies (Harrington et al., 2014; Nopoulos et 

al., 2010; Aylward et al., 2012).  Cortical and subcortical volumes were adjusted for total 

intracranial volume [(volume/intracranial volume) *100)].  ANCOVAs (age adjusted) tested for 

the main effect of group for each of the 34 cortical thickness and volume measures and five 

subcortical volumes (putamen, globus pallidus, caudate, accumbens, thalamus), using the false 

discovery rate (FDR) correction for multiple comparisons.  Each subject’s MRI was initially 

analyzed in original space.  Processing included removal of non-brain tissue by a hybrid 

watershed/surface deformation procedure, segmentation of subcortical structures (Fischl et al., 
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2002), and further intensity normalization.  This was followed by white-matter segmentation, 

tessellation of the grey-white matter boundary, and automated topology correction (Fischl et al., 

2001).  Then surface deformation following intensity gradients optimally placed the grey/white 

and grey/cerebrospinal fluid borders at the location where the greatest shift in intensity defines 

the transition to the other tissue class.  Once the cortical models were complete, deformable 

procedures performed additional data processing and analysis, including parcellation of the 

cerebral cortex into 34 conventional gyral- and sulcal-based neuroanatomical regions in each 

hemisphere based on the Desikan atlas, which is sensitive to structural changes in the cortex of 

individuals with prodromal Huntington’s disease (Harrington et al., 2014).  Intensity and 

continuity information from the segmentation and deformation procedures produced 

representations of cortical thickness, which were calculated as the closest distance from the grey-

white matter boundary to the grey-CSF boundary at each vertex on the tessellated surface.  

FreeSurfer also outputs subcortical volumetric measures.  

Results 

Network Topology 

Unadjusted group means are shown in Supplementary Table 2 for global and intermediate 

network measures.  

 Rich club anatomy.  Preliminary analyses explored whether variations in the cutoff 

value of node strength (k) for different proportions of subjects (e.g., k>130 and 90% of subjects 

in one or more groups versus k >210 in 67% of subjects in one or more groups) substantially 

altered the anatomy.  Despite variations in the number of nodes identified, rich club anatomy 

remained remarkably similar irrespective of the threshold.  The criterion adopted in our study 

was chosen because it placed 17% of the nodes in the rich club, which is comparable to an 

anatomical rich club of 15% of the nodes (van den Heuvel and Sporns, 2011). Our rich club 

anatomy was also largely compatible with rich club structures identified by others (Tomasi and 

Volkow, 2010; Achard et al., 2006; Tomasi and Volkow, 2011; Grayson et al., 2014; Hagmann 

et al., 2008; van den Heuvel and Sporns, 2013; Crossley et al., 2013).  Moreover, node strength 

(summed z-score) did not significantly differ among the groups for any of the 50 nodes, which 

provides converging evidence that the density of connections between the rich-club nodes 

specifically decreased with proximity to diagnosis. This result further supports the validity of the 
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rich club anatomy identified in this study.  The location of rich clubs was similar within and 

across groups.   

Whole-brain functional connectivity of aberrant nodes 

The NBS analyses identified functional connectivity disturbances in prodromal Huntington’s that 

were characterized by weaker (Negative > prodromal Huntington’s disease) or stronger 

(prodromal Huntington’s disease > Negative) connections relative to the Negative group.  

Supplementary Table 3 lists the regional distributions of weakened and strengthened functional 

connectivity (i.e., percentages of nodes exhibiting abnormal connectivity within a region of the 

brain relative to the total number of aberrant nodes) in the Medium and High groups.  

 An inspection of the results from the NBS analysis revealed that some nodes exhibited 

abnormal connectivity with multiple regions in the Medium and/or High groups.  As 

disturbances in these nodes might be an important source of abnormal communication, we 

explored the effects of disease burden on whole-brain connectivity of this subset of nodes.  To 

identify these nodes, the frequency by which each of the 300 nodes appeared in an aberrant 

connection in the Medium and/or High group was plotted. The cut off criterion for nodes with 

the most aberrant connections was based on the point at which the frequency distribution of the 

number of aberrant edges began to asymptote (range of aberrant connections = 8 to 25).  

Supplementary Table 4 lists the nodes with the highest number of weakened and strengthened 

aberrant connections.  We calculated the sum of z-scores for each of these nodes and its edges to 

obtain a composite measure that quantified functional connectivity of a node with the whole 

brain, in contrast to the group NBS comparisons of node-to-node functional connectivity.   

 Group differences were found for 10 nodes that showed weakened whole-brain 

connectivity (Supplementary Table 4).  Only the Low and High groups showed weakened left 

anterior cingulate connectivity, whereas only the Medium group showed weakened left middle 

occipital gyrus (MOG) connectivity.  All prodromal Huntington’s groups showed weakened left 

hippocampus, right thalamus, bilateral insula, left IFG, and right Heschl’s gyrus connectivity 

relative to the Negative group.  CAP scores did not correlate with the summed z-scores for any 

of these regions.  As for enhanced connectivity, only whole-brain connectivity of the right IPL 

differed in prodromal Huntington’s, with the High group showing enhanced right IPL 

connectivity, the strength of which also positively correlated with CAP scores (r = 0.31, p = 

.032).     



Page 8 
 

Brain structure 

Results from ANCOVAs (age adjusted) testing group differences in cortical volume and 

thickness are summarized in Supplementary Tables 5 and 6, respectively.  Two regions showed 

group differences in cortical volume and eleven regions showed group differences in cortical 

thickness (p < 0.05, uncorrected).  However, none of these regions survived an FDR correction 

for multiple comparisons, which were applied separately to the cortical volume and thickness 

measures.  Though we did not find significant cortical thinning and volume loss in the prodromal 

Huntington’s group, our study may be underpowered in this respect, owing to reports of cortical 

thinning and volume loss in studies of large prodromal Huntington’s disease samples (n > 300) 

(Nopoulos et al., 2010; Harrington et al., 2014).  Group differences in volumes of bilateral 

putamen, globus pallidus, caudate, and nucleus accumbens were found (Supplementary Table 7), 

largely due to atrophy in the High group compared to the Negative and/or Low groups.   
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Supplementary Table 1: Summary statistics for network measures in gene Negative and prHD groups as a function of the parcellation method.

Network Statistic/Parcellation Method Negative Low Medium High p value

Density (weighted)

Craddock Group 0.498 (0.840) -0.181 (0.808) -0.200 (0.998) -0.128 (1.252) 0.115

Craddock Individual Subjects 0.503 (0.713) -0.124 (0.882) -0.404 (0.973) 0.020 (1.262) 0.091

Blumensath Individual Subjects 0.105 (0.967) -0.151 (1.151) 0.064 (0.863) -0.018 (1.108) 0.873

Global efficiency (weighted)

Craddock Group -0.550 (0.732) -0.017 (1.222) 0.091 (0.874) 0.481 (0.944) 0.022

Craddock Individual Subjects -0.544 (0.736) -0.057 (1.197) 0.067 (0.812) 0.537 (0.997) 0.022

Blumensath Individual Subjects -0.452 (0.852) -0.083 (0.972) -0.060 (0.749) 0.594 (1.193) 0.065

Average clustering coefficient (weighted)

Craddock Group 0.135 (1.220) -0.002 (1.167) 0.186 (0.788) -0.318 (0.805) 0.476

Craddock Individual Subjects 0.163 (1.292) 0.025 (1.093) 0.231 (0.800) -0.420 (0.702) 0.248

Blumensath Individual Subjects 0.401 (1.039) 0.086 (1.114) -0.230 (0.859) -0.255 (0.947) 0.182

Rich club AUC (weighted)

Craddock Group 0.686 (0.809) 0.100 (1.091) -0.281 (0.840) -0.506 (0.915) 0.004

Craddock Individual Subjects 0.662 (1.023) 0.070 (1.015) -0.248 (0.735) -0.485 (0.915) 0.011

Blumensath Individual Subjects 0.504 (1.036) -0.179 (0.913) -0.065 (1.143) -0.260 (0.815) 0.044

Age-adjusted means (SD) are presented for each of the network measures as a function of the parcellation method that was used, including the Craddock et al. method 

for group and individual subjects and the Blumensath et al. method for individual subjects. P-values are from the Kruskall-Wallis nonparametric permutation tests for the 

main effect of group.



Page 14 
 

 

  

Supplementary Table 2. Summary statistics for network properties in gene Negative and prHD groups.

Network Statistic Negative Low Medium High p CAP r

Weighted density 153.033 (16.384) 141.340 (15.889) 139.829 (19.878) 139.936 (25.054) 0.115 -0.003

Global efficiency (weighted) 0.794 (0.036) 0.820 (0.061) 0.826 (0.043)* 0.846 (0.047)* 0.022 .33*

Average clustering coefficient (weighted) 1.486 (0.171) 1.493 (0.184) 1.503 (0.120) 1.405 (0.130) 0.476 -0.14

Rich club AUC (weighted) 138.238 (2.567) 136.024 (3.380)
a

135.132 (2.665)* 134.749 (2.899)* 0.004 -.32*

Tabled values are the mean (standard deviations) for the unadjusted values.  Nonparametric permutation tests of the main effect of group (Negative, Low, 

Medium, High; FDR corrected) were conducted on the standardized residuals (age adjusted), the means for which are graphed in Figure 1.  AUC = area 

under the curve

* For variables demonstrating a significant main effect of group, asterisks denote significant differences in the means between the Negative group and each 

of the prHD groups (p<.05).  Asterisks also designate significant Pearson correlations.  

a
 Nonsignificant trend for a difference between the Low and Negative groups (p=0.093).

Global efficiency, average cluster coefficient, and rich club AUC represent ratios of actual measure relative to the average of 100 random networks.
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Supplementary Table 3. Regional distributions of weakened and strengthened functional connectivity in prHD.

Medium High

Negative > prHD

Number of aberrant edges 96 130

     Frontal cortices & insula 52% 95%

     Memory areas (hippocampus, parahippocampus) 26% 19%

     Parietal cortex 3% 5%

     Ventral attention areas (occipital, lateral temporal) 42% 0%

     Thalamus 8% 18%

     Basal ganglia 0% 4%

     Cerebellum & brainstem 13% 5%

prHD > Negative

Number of aberrant edges 0 122

     Frontal cortices 39%

     Parietal 37%

     Ventral attention areas (occipital, lateral temporal, fusiform) 75%

     Thalamus 21%

     Basal ganglia 1%

     Cerebellum 20%

Aberrant functional connectivity was identified by comparing the matrix z-score correlations for all edges 

connecting the 300 nodes between the Negative group with each of the prHD groups (Low, Medium, High).

Aberrant edges were identified using network based statistics (NBS).  The percentage of nodes exhibiting 

abnormal connectivity within an area of the brain, relative to the total number of aberrant nodes, is tabulated for 

weakened (Negative > prHD)  or strengthened (prHD > Negative) functional connectivity.
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Supplementary Table 4. Whole-brain functional connectivity of nodes with the highest number of aberrant connections in prHD.

Region x y z Group

Negative > prHD
Negative > 

Low

Negative > 

Medium

Negative > 

High

L Anterior Cingulate -6 43 4 20 0.009 0.007 0.004

L Hippocampus -19 -18 -15 18 0.016 0.027 0.008 0.008

R Inferior Frontal Gyrus 51 11 10 18 0.0004 0.0004 0.017 0.0004

L Middle Frontal Gyrus -26 39 29 15

R Thalamus 7 -13 -2 15

R Parahippocampal Gyrus 33 -29 -13 12

L Middle Occipital Gyrus -26 -86 8 11 0.024 0.004

L Hippocampus -30 -28 -13 10 0.050 0.049 0.013 0.019

R Heschl's gyrus 54 -7 7 10 0.033 0.009 0.011 0.005

R Insula 48 4 -2 9 0.020 0.012 0.021 0.005

L Inferior Frontal Gyrus -45 22 6 8 0.002 0.012 0.002 0.009

L Calcarine -8 -85 -2 8

L Insula -40 8 -2 8 0.003 0.001 0.002 0.011

R Thalamus 10 -27 -3 8 0.039 0.034 0.006 0.023

prHD > Negative
Low > 

Negative

Medium > 

Negative

High > 

Negative

R Iinferior Parietal Lobule 45 -54 42 25 0.014 0.014 0.001

L Thalamus -9 -19 11 17

L Medial Superior Frontal Gyrus -6 34 46 16

L Fusiform -34 -67 -14 13

L Lingual -19 -81 -7 9

R Cuneus/Precuneus 7 -76 35 9

R Thalamus 10 -18 11 8

Talairach Coordinates Number of 

Connections

Nodes with the highest number of weakened and strengthened aberrant connections in one or more of the prHD groups, based on simple functional 

connectivity analyses.  Anatomical location of the nodes is displayed in Figure 6.  For each node, whole-brain functional connectivity was computed 

(summed z-scores).  Group column tabulates the p-value for significance tests of the main effect of group (Negative, Low, Medium, and High) in 

summed z-scores (age-adjusted residuals).  The remaining columns to the right tabulate the significance of planned comparisons between the 

Negative group and each of the prHD groups.  The top rows show nodes in which functional connectivity was weakened in the prHD groups 

(Negative > prHD) and the bottom rows show nodes in which functional connectivity was strengthened in the prHD groups (prHD > Negative). 
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Supplementary Table 5.  Group differences in cortical volumes (ICV-corrected) derived from FreeSurfer parcellations.

Desikan Region Mean SD Mean SD Mean SD Mean SD

Caudal anterior-cingulate cortex 0.261 0.038 0.301 0.047 0.302 0.034 0.274 0.045 0.013 0.121

Transverse temporal cortex 0.148 0.014 0.149 0.022 0.156 0.023 0.137 0.020 0.036 0.083

Rostral anterior cingulate cortex 0.328 0.031 0.362 0.031 0.350 0.035 0.335 0.050 0.053 0.061

Posterior-cingulate cortex 0.427 0.041 0.464 0.061 0.454 0.055 0.422 0.060 0.076 0.034

Supramarginal gyrus 1.478 0.137 1.551 0.232 1.502 0.187 1.409 0.142 0.085 0.005

Parahippocampal gyrus 0.301 0.042 0.322 0.033 0.308 0.034 0.294 0.035 0.092 0.005

Superior temporal gyrus 1.599 0.190 1.636 0.148 1.638 0.167 1.519 0.171 0.096 0.031

Rostral middle frontal gyrus 2.142 0.213 2.252 0.180 2.139 0.189 2.104 0.216 0.134 0.013

Superior frontal gyrus 2.969 0.218 3.119 0.232 3.023 0.288 2.952 0.293 0.153 0.006

Insula 0.932 0.054 0.984 0.081 0.955 0.063 0.942 0.087 0.173 0.023

Banks superior temporal sulcus 0.337 0.035 0.369 0.065 0.341 0.052 0.341 0.041 0.184 0.025

Middle temporal gyrus 1.527 0.190 1.626 0.200 1.600 0.210 1.511 0.139 0.196 0.013

Lateral orbital frontal cortex 0.988 0.093 1.052 0.102 1.023 0.108 0.992 0.097 0.203 0.015

Pars opercularis 0.618 0.085 0.639 0.085 0.604 0.060 0.584 0.096 0.227 0.014

Entorhinal cortex 0.268 0.031 0.272 0.034 0.247 0.036 0.256 0.051 0.247 0.055

Cuneus cortex 0.439 0.060 0.438 0.049 0.402 0.050 0.431 0.076 0.265 0.066

Lateral occipital cortex 1.595 0.123 1.616 0.135 1.525 0.136 1.537 0.218 0.292 0.041

Paracentral lobule 0.491 0.065 0.532 0.080 0.518 0.059 0.497 0.070 0.296 0.023

Medial orbital frontal cortex 0.711 0.061 0.748 0.060 0.721 0.071 0.721 0.052 0.378 0.031

Isthmus–cingulate cortex 0.335 0.029 0.356 0.041 0.350 0.049 0.337 0.041 0.407 0.012

Frontal pole 0.121 0.019 0.133 0.021 0.125 0.027 0.126 0.013 0.461 0.023

Precentral gyrus 1.815 0.172 1.877 0.160 1.808 0.196 1.793 0.193 0.519 0.006

Fusiform gyrus 1.371 0.157 1.412 0.110 1.401 0.161 1.348 0.142 0.529 0.005

Pars triangularis 0.541 0.080 0.566 0.080 0.534 0.075 0.544 0.058 0.567 0.039

Inferior parietal cortex 1.952 0.182 2.000 0.208 1.953 0.228 1.905 0.211 0.606 0.002

Pars orbitalis 0.315 0.042 0.328 0.034 0.319 0.046 0.315 0.035 0.685 0.006

Pericalcarine cortex 0.325 0.053 0.327 0.045 0.314 0.042 0.335 0.065 0.724 0.033

Caudal middle frontal gyrus 0.843 0.107 0.878 0.126 0.886 0.107 0.875 0.161 0.725 0.058

Temporal pole 0.320 0.040 0.328 0.040 0.313 0.060 0.314 0.038 0.769 0.007

Precuneus cortex 1.375 0.125 1.399 0.139 1.395 0.142 1.358 0.112 0.784 0.004

Superior parietal cortex 1.919 0.204 1.954 0.124 1.919 0.165 1.893 0.221 0.824 0.004

Postcentral gyrus 1.362 0.141 1.360 0.106 1.327 0.161 1.363 0.142 0.842 0.050

Lingual gyrus 0.930 0.115 0.952 0.100 0.955 0.157 0.924 0.129 0.869 0.004

Inferior temporal gyrus 1.492 0.195 1.516 0.155 1.515 0.156 1.490 0.168 0.948 0.012

Note. Regions ranked from lowest to highest p-values.

ICV correction = regional volume/intracranial volume.

η p
2
 = partial eta-squared, a measure of effect size.

Bold Italics  indicate significant group differences (p < 0.05) based on oneway ANCOVA with age as covariate, uncorrected for multiple 

comparisons.  Main effects of group did not survive the FDR correction for any of the regions.

NEGATIVE LOW MEDIUM HIGH
p η p

2
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Supplementary Table 6.  Group differences in cortical thickness derived from FreeSurfer parcellations.

Desikan Region Mean SD Mean SD Mean SD Mean SD

Pars opercularis 5.176 0.281 5.415 0.203 5.271 0.175 5.214 0.168 0.008 0.083

Lateral occipital cortex 4.549 0.190 4.548 0.124 4.596 0.192 4.386 0.207 0.009 0.129

Superior frontal gyrus 5.474 0.256 5.656 0.188 5.424 0.254 5.429 0.225 0.013 0.076

Medial orbital frontal cortex 4.787 0.245 5.034 0.246 4.839 0.201 4.940 0.238 0.020 0.132

Rostral anterior cingulate cortex 5.571 0.292 5.916 0.324 5.778 0.368 5.644 0.328 0.022 0.095

Banks superior temporal sulcus 5.136 0.282 5.333 0.304 5.166 0.248 5.057 0.230 0.029 0.049

Middle temporal gyrus 5.770 0.241 5.914 0.235 5.861 0.288 5.698 0.191 0.043 0.027

Supramarginal gyrus 5.231 0.244 5.359 0.185 5.283 0.191 5.162 0.225 0.046 0.020

Caudal middle frontal gyrus 5.142 0.298 5.323 0.185 5.096 0.250 5.155 0.253 0.047 0.070

Superior temporal gyrus 5.568 0.301 5.669 0.241 5.614 0.295 5.427 0.265 0.048 0.021

Rostral middle frontal gyrus 4.743 0.209 4.937 0.207 4.828 0.182 4.774 0.223 0.050 0.070

Caudal anterior-cingulate cortex 5.045 0.287 5.333 0.311 5.281 0.408 5.314 0.334 0.062 0.108

Lingual gyrus 4.123 0.223 4.207 0.153 4.276 0.352 4.085 0.112 0.077 0.066

Pars orbitalis 5.270 0.321 5.533 0.319 5.386 0.275 5.361 0.294 0.091 0.050

Isthmus–cingulate cortex 4.807 0.254 5.039 0.223 4.956 0.312 4.911 0.257 0.092 0.062

Pars triangularis 5.053 0.324 5.244 0.248 5.099 0.265 5.048 0.221 0.097 0.017

Posterior-cingulate cortex 4.988 0.224 5.167 0.284 5.068 0.301 4.972 0.255 0.123 0.016

Entorhinal cortex 6.912 0.463 7.030 0.624 6.824 0.534 6.589 0.501 0.135 0.070

Fusiform gyrus 5.391 0.353 5.553 0.143 5.528 0.329 5.381 0.210 0.140 0.027

Paracentral lobule 4.764 0.263 4.949 0.167 4.854 0.328 4.783 0.223 0.145 0.029

Inferior parietal cortex 5.148 0.248 5.262 0.162 5.176 0.225 5.110 0.185 0.179 0.011

Lateral orbital frontal cortex 5.114 0.195 5.282 0.276 5.217 0.253 5.168 0.253 0.218 0.028

Insula 6.073 0.320 6.252 0.330 6.101 0.262 6.077 0.264 0.220 0.015

Frontal pole 5.424 0.348 5.647 0.430 5.507 0.504 5.375 0.307 0.259 0.038

Inferior temporal gyrus 5.657 0.305 5.750 0.304 5.740 0.354 5.564 0.250 0.274 0.022

Precuneus cortex 4.926 0.247 5.036 0.179 4.935 0.272 4.897 0.214 0.314 0.007

Transverse temporal cortex 4.783 0.349 4.852 0.274 4.860 0.410 4.702 0.224 0.330 0.029

Postcentral gyrus 4.395 0.201 4.479 0.199 4.470 0.260 4.377 0.164 0.395 0.015

Pericalcarine cortex 3.542 0.276 3.509 0.264 3.401 0.289 3.448 0.215 0.426 0.047

Precentral gyrus 5.089 0.294 5.170 0.181 5.082 0.383 5.019 0.207 0.483 0.005

Cuneus cortex 3.927 0.265 3.948 0.199 3.878 0.298 3.836 0.206 0.573 0.020

Parahippocampal gyrus 5.642 0.527 5.531 0.371 5.696 0.472 5.587 0.384 0.683 0.091

Temporal pole 7.347 0.266 7.204 0.514 7.232 0.777 7.139 0.408 0.732 0.021

Superior parietal cortex 4.710 0.273 4.734 0.108 4.719 0.223 4.661 0.259 0.817 0.014

Note. Regions ranked from lowest to highest p-values.

η p
2
 = partial eta-squared, a measure of effect size.

Bold Italics  indicate significant group differences (p < 0.05) based on oneway ANCOVA with age as covariate, uncorrected for multiple comparisons.  

Main effects of group did not survive the FDR correction for any of the regions.

NEGATIVE LOW MEDIUM HIGH
p η p

2
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Supplementary Table 7. Group differences in subcortical volumes (ICV-corrected) derived from FreeSurfer parcellations.

FreeSurfer Region Mean SD Mean SD Mean SD Mean SD

Putamen 0.734 0.066 0.747 0.081 0.652 0.061 0.594 0.098 0.0000002 0.339
> > > >

Pallidum 0.213 0.019 0.212 0.029 0.192 0.026 0.160 0.031 0.0000004 0.359
> > >

Caudate 0.503 0.050 0.526 0.064 0.476 0.063 0.433 0.067 0.00052 0.178
> >

Accumbens 0.069 0.010 0.072 0.009 0.065 0.007 0.060 0.015 0.01 0.089
>

Thalamus 1.123 0.089 1.170 0.128 1.086 0.099 1.113 0.136 0.0594 0.112

Bold-Italics  indicate significant group differences (p < 0.05) based on oneway ANCOVA with age as covariate, corrected for multiple comparisons (False Discovery Rate).  

Note. Regions ranked from lowest to highest p-values.

ICV correction = regional volume/intracranial volume.

η p
2
 = partial eta-squared, a measure of effect size.

MED vs. 

HIGH

NEGATIVE LOW MEDIUM HIGH

p η p
2 NEG vs. 

LOW

NEG vs. 

MED

NEG vs. 

HIGH

LOW vs. 

MED

LOW vs. 

HIGH


