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1 MFPTs dependence on τ and the number of states

After examining hundreds of acceptable models for each protein, more than 1500 in total, constructed as
described in the main manuscript, we found that the dependence of the estimated Markovian MFPTs on the
number of states is in general small as compared to the strong sensitivity to the lag-time (see Figures S1-S4).
In the case of the Trp-Cage, for example (see Figure S1), around 100 models were selected so that the MFPTs
measured directly are within the interval shown in Table S1. However, as shown in Figures S1-S4, in general
the Markovian estimates lie in a wider range depending on the lag-time (τ) used. On the other hand, the
dependency on the number of states is relatively small, especially the cases with shorter lag-times.

Table S1: Definitions of acceptable models. The models with MFPTs within the intervals shown around the
values reported in the literature [1], are considered as good models, and otherwise are discarded.

Protein MFPT Interval (µs)
Folding Unfolding

Chignolin 0.1 - 3.0 0.5 - 8.0
Trp-cage 8.0 - 10 1.0 - 5.0
NTL9 5.0 - 30 75 - 250
Villin 1.0 - 5.0 0.2 - 3.0

Figure S1: Trp-Cage folding and unfolding MFPTs versus number of states for different models constructed as
described in the methods section of the main manuscript. For each model is also plotted the reference MFPT,
which is the value obtained by directly averaging the first-passage times from the trajectory projected on the
model states.
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Figure S2: Chignolin folding and unfolding MFPTs versus number of states for different models constructed as
described in the methods section of the main manuscript. For each model is also plotted the reference MFPT,
which is the value obtained by directly averaging the first-passage times from the trajectory projected on the
model states.

Figure S3: Villin folding and unfolding MFPTs versus number of states for different models constructed as
described in the methods section of the main manuscript. For each model is also plotted the reference MFPT,
which is the value obtained by directly averaging the first-passage times from the trajectory projected on the
model states.

Figure S4: NTL9 folding and unfolding MFPTs versus number of states for different models constructed as
described in the methods section of the main manuscript. For each model is also plotted the reference MFPT,
which is the value obtained by directly averaging the first-passage times from the trajectory projected on the
model states.

One expects the estimated MFPTs will grow monotonically with the lag-time only due to considering the
discretization error. That is true for the MFPT estimated directly without the construction of any model: the
longer lag excludes intermediate time points which may have exhibited events, hence increasing the MFPT.
We should also expect the same behavior for any Markovian estimate, since as τ increases, the Markov model
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becomes a better approximation for the given lag-time. In other words, the results from the Markov model will
be closer to the direct estimation inheriting the same discretization error.

Figures S5 and S6 show the dependence of the MFPTs on the lag-time in our models, where the macrostates
(Folded and Unfolded) are defined as described above. The horizontal green dashed line labeled (MFPT - True
Value) is the MFPT measured directly from all trajectory data with highest time resolution (0.2 ns), and it is
our best estimate. The confidence intervals with 95% of confidence are shown as green horizontal stripes.
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Figure S5: MFPTs versus lag-time in Trp-cage and Chignolin

What we called “MFPT with discretization error” is the MFPT measured directly from the trajectory for
the given lag-time. Of course the “MFPT - True Value” also has discretization error, but we can not examine
the trajectory at higher time resolution so we will consider this value as reference. As noted in the main paper,
the estimate τ/peq(B) corresponds to the non-dynamic estimate expected in the limit long lag times τ , where
B denotes the target state, whether folded or unfolded.

As expected, the Markov MFPT estimates tend to approach the MFPT with discretization error, and often
significantly exceed the ’true value’ with the smallest discretization error. The Markov data, notably, do not
appear to exhibit any inflections which might suggest larger lag times which could be justified in the absence
of the long-trajectory analysis.

2 Software and algorithms used for calculating MFPT estimates

2.1 Markov State Modeling

There is more than one way to compute the MFPT in a Markov mode. Here the MFPT is obtained from the
flux entering the target state [2] via

MFPT(A→ B) =
p(α)

Flux(A→ B|α)
, (1)

where Flux(A → B) is the average probability arriving, per unit time, at the target state B in the α steady
state (trajectories that where last in A). Finally, p(α) is the total probability in the α steady state.

The numerical value of p(α) and in general the µ-labeled probabilities in each bin pµi in a Markov model are
obtained by imposing the steady state condition

KT pµ = pµ, (2)
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Figure S6: MFPTs versus lag-time in Villin and NTL9

where KT is the 2N × 2N “colored” matrix [8], where the transition probabilities are chosen to be history
independent (i.e. kµνij = kij)

Then, the probability flux entering B is computed as

Flux(A→ B|α) =
∑

i/∈B, j∈B

pαi k
αβ
ij =

∑
i/∈B, j∈B

pαi kij . (3)

In practice, the indexes i and j go from 0 to 2N − 1 in our 2N × 2N matrix, where we store in the even and
odd rows the α→ ν and β → ν rates respectively. Similarly, in the even and odd columns we have the µ→ α
and µ→ β rates respectively.
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In python code, we can evaluate Eq. 1 as follows:

#We are going to cons ider here we tha t a l ready have the
#Markovian t r an s i t i o n matrix (MarkovTM)
import numpy as np

#Creating the pseudo−co lored t r an s i t i o n matrix
K = np . z e ro s ( (2∗N,2∗N))
for i in xrange (2∗N) :

for j in xrange (2∗N) :
K[ i , j ] = MarkovTM[ int ( i /2) , int ( j / 2 ) ]

#There are forb idden t r an s i t i on s , so some elements o f K
# must be zero by cons t ruc t i on .
for i in xrange (N) :

for j in xrange (N) :
# the v a r i a b l e s macroStateA and macroStateB are l i s t s t ha t

# contain the s t a t e s t ha t de f i ne them .
i f ( i in macroStateB ) or ( j in macroStateB ) :

K[2∗ i , 2∗ j ] = 0 .0
i f ( i in macroStateA ) or ( j in macroStateA ) :

K[2∗ i +1 ,2∗ j +1] = 0 .0
i f (not ( j in macroStateA ) ) or ( i in macroStateA ) :

K[2∗ i +1 ,2∗ j ] = 0 .0
i f (not ( j in macroStateB ) ) or ( i in macroStateB ) :

K[2∗ i , 2∗ j +1] = 0 .0

#Obtaining the SS l a b e l e d popu la t i ons from the 2N x 2N matrix K
Pr=so lveSteadyState (K) #So lv ing KˆT Pr = Pr

#Total popu la t ion o f the a lpha s teady s t a t e .
popAlpha = 0 .0
for i in xrange (0 ,2∗N, 2 ) :

popAlpha += Pr [ i ]

#Computing the Flux from A to B
fluxAB = 0.0
for i in xrange (0 ,2∗N, 2 ) :

for j in xrange (2∗N) :
# in t ( j /2) e x t r a c t s the phy s i c a l ( uncolored ) s t a t e index
i f int ( j /2) in macroStateB :

fluxAB += Pr [ i ]∗K[ i , j ]

#Computing the MFPT from A to B
MFPTAB = popAlpha/fluxAB

In the previous code N is the number of physical states, K is K and Pr is pµ, the steady state solution of
Eq. 2. The macro states A and B are denoted by macroStateA and macroStateB respectively and are essentially
python lists that contain the indexes of the states that define them.

2.2 Markov + color

Here, the MFPT is calculated in the same way as the previous section (Eqs. 1 and 3), except that we use a
modified version of K that has partial color information in it (K̃). We emphasize that K has color history
information built in, even though it is manipulated like a Markovian matrix.

In order to compute K̃ we first compute a non-Markovian 2N × 2N count matrix C, in which the color
information is used when available. The following code can be used to compute C, from each transition. Note
that we use the Markovian solution (pµ, Pr in the code) of Eq. 2 to infer the color when it is not available.
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import numpy as np
countMatrix = np . z e r o s ( (2∗N,2∗N)) #In i t i a t i n g as zero a l l the e lements
prevColor = ”U” #prev ious co l o r i s s e t as unknown

for i in xrange ( numSnapShots ) : #numSnapShots i s the number o f time po in t s
#we have in the s imu la t ion

cu r r en tS ta t e = sta te Index [ i ] #funt ion tha t g e t s the i−snapshot

# Macro s t a t e determinat ion .
# The v a r i a b l e s macroStateA and macroStateB are l i s t s t ha t
# contain the s t a t e s t ha t de f i ne them .
i f cu r r en tS ta t e in macroStateA :

macroState = ”A”
e l i f cu r r en tS ta t e in macroStateB :

macroState = ”B”
else :

macroState = ”U”

#Color determinat ion
i f macroState == ”A” :

c o l o r = ”A”
e l i f macroState == ”B” :

c o l o r = ”B”
else :

c o l o r = prevColor

#Construct ing the Markov + Color count matrix ” countMatrix ”
i f i >1:

i f prevColor == ”A” and c o l o r == ”B” :
# alpha −> be ta t r a n s i t i o n
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e +1] += 1 .0

e l i f prevColor == ”B” and c o l o r == ”A” :
# beta −> alpha t r an s i t i o n
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e ] += 1 .0

e l i f prevColor == ”A” and c o l o r == ”A” :
# alpha −> alpha t r an s i t i o n
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e ] += 1 .0

e l i f prevColor == ”B” and c o l o r == ”B” :
# beta −> be ta t r a n s i t i o n
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e +1] += 1 .0

e l i f prevColor == ”U” and c o l o r == ”B” :
# unknown−co l o r −> be ta t r a n s i t i o n
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e +1] += \
Pr [2∗ prevState ] / ( Pr [2∗ prevState ] + Pr [2∗ prevState+1] )
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e +1] += \
Pr [2∗ prevState+1] / ( Pr [2∗ prevState ] + Pr [2∗ prevState+1] )

e l i f prevColor == ”U” and c o l o r == ”A” :
# unknown−co l o r −> alpha t r an s i t i o n
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e ] += \
Pr [2∗ prevState ] / (Pr [2∗ prevState ] + Pr [2∗ prevState +1])
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e ] += \
Pr [2∗ prevState +1]/ (Pr [2∗ prevState ] + Pr [2∗ prevState +1])

e l i f prevColor == ”U” and c o l o r == ”U” :
# unknown−co l o r −> unknow−co l o r t r a n s i t i o n
tempSum =2 ∗ (Pr [ 2∗ prevState ] + Pr [2∗ prevState +1])
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e +1] += \
Pr [2∗ prevState ] / tempSum
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e +1] += \
Pr [2∗ prevState +1]/tempSum
countMatrix [ 2∗ prevState , 2∗ cu r r en tS ta t e ] += \
Pr [2∗ prevState ] / tempSum
countMatrix [ 2∗ prevState+1, 2∗ cu r r en tS ta t e ] += \
Pr [2∗ prevState +1]/tempSum

else :
print ”Error whi l e c on s t ru c t i ng the Markov + Color matrix ”
sys . e x i t ( )

prevColor = co l o r
prevState = cur r en tS ta t e

After the count matrix is built we just need to normalize each row to obtain the Markov + Color rate matrix
K̃, i.e., divide the elements of the row by the total sum of the counts in the given row. Then we can compute
the fluxes and the MFPT from K̃ the same way we shown in the previous section from K.
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2.3 2nd-order Markov

The 2nd-order Markov model extends the regular Markov model by including in the analysis another time-point
in the history at time t − nτ , where n = 1, 2, ... (see the main manuscript). Then, all the properties can be
estimated from a numerical simulation of the model from the transition probabilities. In order to initiate the
simulation, we take randomly one of trajectory segments used to construct the matrix and extract a small
fragment to be used as a “seed”. The number of snapshots in the seed should be greater than the history length
by at least one snapshot. In every system, the number of iterations used for the simulation was 10 times the
length in snapshots of the original simulation.

2.4 2nd-order Markov + color

In the 2nd-order Markov+Color estimator, we want to use color information when it is available, but the strategy
we follow is different from (first-order) Markov+Color. Here, for each transition we examine the trajectory back
in time up to a given history length (nτ). If a macro state A or B is found, the third index m (see Eq.5 in the
main manuscript) takes the label of the first bin/state which defines the macro state - which is just a convenient
way to encode the α and β labels. The following code shows we assign the third index to construct the matrix.

for j in xrange ( h i s tLength+1,numSnapShots ) :
secondIndex = sta te Index [ j −1] #the s t a t e from which the t r an s i t i o n s t a r t s

for m in xrange ( j −2, j−2−histLength ,−1) :
th i rd Index = sta te Index [m] #the time−po in t we take more backward in time
i f ( secondIndex in macroStateA ) or ( th i rd Index in macroStateA ) :

th i rd Index = macroStateA [ 0 ]
break

e l i f f ( secondIndex in macroStateB ) or ( th i rd Index in macroStateB ) :
th i rd Index = macroStateB [ 0 ]

break

Again, once we have the transition matrix, all the properties can be estimated from a numerical simulation
of the model from the transition probabilities as described in the previous section.

3 Non-Markovian estimates vs the lag-time

Any model has to “learn” from the real dynamics, or at least from the evolution of the selected collective variables
at a time resolution no higher than the one used to store the trajectories. Even a carefully designed model
cannot make unambiguous predictions about the dynamics at a higher time resolution. That is a limitation
that any model will have.

Figure S7 illustrates with an example how our estimates “Markov + Color” and “2nd-Markov + Color” lie
within the confidence interval of the direct method (Long MD) for a history length of 200ns. However, all the
methods, including the direct, are influenced by the discretization error and they all grow artificially with the
lag time.

Our Non-Markovian models are not an exception and they will inherit the same discretization error of the
available data. However, in this case we can reduce the lag-time as much as we can and overcome that limitation.
On the other hand, in a regular Markov model that is not possible since the model has to be as Markovian as
possible.
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Figure S7: Unfolding MFPT estimates vs lag-time in Trp-cage. The horizontal black dashed line is the direct
estimation at the highest time resolution (0.2ns). The green region represents a the confidence interval, with
95% of confidence, of the direct estimation (Long MD). The best estimate is the direct estimation for the
shortest lag-time.
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