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S1 Supporting Information

S1.1 Model and numerical simulations

The myosin motor can exist in three states: detached (D), weakly attached (W), or
strongly attached (S). The D and W states switch at constant transition rates kDW and
kWD, respectively; the W–S (kWS) and S–D (kSD) transitions are functions of the
myosin head position, as implemented in the Huxley 1957 model [1].

kWS =


0, x < 0

αax, 0 < x < lt

0, x > 0

kSD =

{
Dn, x < 0

αdx, x > 0

The S state is described as a continuous energy landscape with three minima,
corresponding to a pre-power stroke (S0) and a power stroke with two stages (S1 and
S2). In SL, the central region of the biochemical energy landscape is defined as in
Equation 5. ATP energy release favors the power stroke by biasing the biochemical
energy such that ES0

c > ES1
c > ES2

c . To simulate this bias, we add a linear drop Fatp to
the flat sinusoidal part of Ec. αd is a constant angle that adjusts for the constant ATP
drop by shifting the first minimum to zero. The convex part is expressed by a
polynomial, ensuring a continuous first derivative. The energy barrier in the sinusoidal
function is chosen as H = 6κbT0 (in the two flat landscapes, the maximum is less
important because it is included in the unloaded rate constants; see main text). We can
then approximate the minimum in Ec as a parabola with stiffness H(2π/d)2, which
corresponds to kc = 48 pN/nm. Therefore, the energy bias due to the ATP is
Fatp = 8κbT0/d (where T0 = 37 ◦C is the reference temperature and d is the distance
between two consecutive minima). Note that the total energy drop due to the ATP in
the biochemical component is 16κbT0, below the total amount of energy released by
ATP hydrolysis (approximately 18κbT0). The ATP energy difference is here attributed
to Huxley’s 1957 [1] hypothesis, whereby preferential attachment at higher stretching
levels requires energy to break the detailed balance. According to H57, the pre-power
stroke state also generates a force, here justified by the above-mentioned ATP energy
difference.
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S1.2 Number of myosin molecules, TT units, Cooperativity and
Geometry

The lengths of the half-actin and myosin filaments are 1224 nm and 925 nm,
respectively. The myosin filament includes 50 nm of bare zone with no myosin heads,
implying 60 myosin molecules per thick filament. Each thick filament is surrounded by
six double-helix thin filaments, each of which can be reached by the myosin heads on
three thick filaments; therefore, each myosin filament contains approximately 30
double-headed myosin molecules, which can interact with each actin filament. Because
troponin–tropomyosin (TT) units are related to each single strand in the helix, this
number is strictly halved, but is restored to 30 to accommodate two myosin heads per
molecule. To allow for possible interaction from other myosin heads [3], we increase the
number of myosin heads interacting with each actin filament to 38, as in [2]. The total
force is then multiplied by two to recover the double-stranded helix.

Muscle contraction and release is governed by the amount of Ca in the troponin
binding sites, which is able to shift the tropomyosin filament exposing F-actin to myosin
motors. The occupancy of these binding sites is governed by the myoplasmic free
[Ca2+], which diffuses, following an action potential on the cell membrane, from the
sarcoplasmatic reticulum (SR) release channels to the myofibrillar space, and is
subsequently taken up by the SR Ca pumps. As a consequence, the myoplasmic free
[Ca2+] depends on the particular experimental or physiological situation. The actin
filament houses several TT units, each with two Ca affinity sites, spaced at 36nm
intervals. The rate of Ca ion occupancy depends on the instantaneous Ca concentration.
When both Ca sites are empty (Ca-off in S1 Fig) or only one site is filled (Ca-on*), the
TT unit is inactive and the corresponding portion of the actin filament has lower
affinity for the myosin head (modeled through the variable QCa). The affinity increases
when both sites are filled (Ca-on). Moreover, if at least one myosin is already attached
to an actin monomer corresponding to a TT unit, the deformation of the tropomyosin
filament reduces the detachment rate of the captured Ca ions (by factors of 4 and 2 in
Ca-on → Ca-on* and Ca-on* → Ca-off transitions, respectively).

In single-fiber simulations, we impose a tetanic state such that the myoplasmic free
[Ca2+] is constant and sufficiently high to saturate the Ca binding sites in the troponin.
In the whole-heart simulations, the free [Ca2+] transient is imposed as in S2 Fig In the
whole-heart simulations, the free Ca at each side of the ventricle is computed by
conducting an excitation propagation simulation [4], whereby the human cardiomyocyte
model [5] is applied for the computation of the ion channel currents. S2 Fig shows the
time evolution of the Ca transient averaged over the ventricle.

In the single-fiber simulations, the calcium concentration is fixed at its saturated
value (tetanic situation), whereas in the whole-heart simulation, the Ca concentration
follows a realistic time-transient trend. Moreover, the transient is shifted in each
sarcomere, approximating the real spreading of an electrical signal.

The cooperativity of myosin attachment affects the transition rates kDW and kWD

through a parameter γn, where n is 0 if there are no nearest neighbors and 1 or 2 if one
or two myosin heads are already weakly or strongly attached, respectively. Finally, to
account for the overlapping of filaments in over-compressed or over-stretched situations,
we multiply kWS by a sigmoidal factor χ:

χ =

{
1, xs < 0

exp(−x2
s/a

2
s), xs > 0

where xs is the overlapping or overstretched distance of the given myosin head and as is
a constant. In the absence of overlapping or overstretching, xs < 0. These three effects
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are modeled as described in [2], which gives:

kDW = k0
DWQCaγ

nχQ10

At each time step, the algorithm updates the position xi of the i− th myosin head with
respect to its anchor on the thick filament. In this way, the total tension generated is
given by:

FTot = 2

Nfil∑
j=0

NXB∑
i=0

k(xi)xi (S1)

where NXB is the total number of myosin heads, Nfil is the number of filaments in the
sarcomere, and k(xi) explicitly expresses the dependence of the asymmetric stiffness on
the myosin position. The factor of two accounts for the second strand, as mentioned
above. In SRI and SRII, the position of the myosin head is first updated based on the
position of the actin filament, z, in the previous time step:

xi(t) = z(t)− zai + xai + npsd (S2)

Here, zai and xai are the positions of the actin filament and the myosin pre-stretch,
respectively, at the time of attachment of the i− th myosin head. nps equals 0, 1, or 2
when the myosin head resides in the S0, S1, or S2 minimum, respectively. Having
updated the position of each myosin head, the algorithm updates the position of the
actin filament using Newton–Raphson method. In each iteration, the total force is
computed by Equation S1.

In the implicit scheme, an equation of the form

q(u̇, u) + f = 0 (S3)

is approximately solved so that the following two equations are simultaneously satisfied
at every time step from t to t+ ∆t.

q(t+∆tu̇, t+∆tu) + t+∆tf = 0 (S4)

t+∆tu = tu+ ∆t
[
γ̄ t+∆tu̇+ (1− γ̄) tu̇

]
(S5)

where q is the internal force vector given as a function of u̇ and u, and f corresponds to
the external force vector. In the single-fiber simulations, u is an (Nxb ∗Nf il + 1) vector
of the positions of the myosin motors and actin filaments, whereas u̇ represents their
velocities. q is the force generated by myosin elastic elements and their drag force, as
well as the drag force on the actin filament. f is the external force applied to the actin
filament (when present). In SL, this also contains the random forces acting on each
myosin motor. Finally, γ̄ is a parameter of between 0 and 1. In our case, γ̄ = 0.6. In the
heart simulator, we use a similar but more complicated procedure, because we apply a
number of Monte Carlo time steps (∆t = 1 µs) within each Finite Element Model time
step (∆t = 1.25 ms). Refer to [2] for a detailed explanation.

In Newton-Raphson method, Equations S4 and S5 are iteratively solved by
linearizing the internal force term, as described in the following procedure. First, the
initial guess is given by:

t+∆tu̇(0) = tu̇ (S6)

t+∆tu(0) = tu (S7)

Then, the first iteration is conducted as follows:
Residual computation:

r(0) = t+∆tq(t+∆tu̇(0), t+∆tu(0))− t+∆tf (S8)
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Solution for the velocity update:

(C(0) + γ̄∆tK(0))∆u̇(1) = r(0) −∆C(0)tu̇ (S9)

Updating:
t+∆tu(1) = t+∆tu(0) + γ̄∆t∆u̇(1) + ∆ttu̇ (S10)

t+∆tu̇(1) = t+∆tu̇(0) + ∆u̇(1) (S11)

Here, C(0) =
dq

du̇
(t+∆tu̇(0), t+∆tu(0)), and K(0) =

dq

du
(t+∆tu̇(0), t+∆tu(0)).

From the second iteration (k > 0), the following procedure is conducted until the
residual norm becomes sufficiently small.

Residual computation:

r(k+1) = t+∆tq(t+∆tu̇(k), t+∆tu(k))− t+∆tf (S12)

Solution for the velocity update:

(C(k) + γ̄∆tK(k))∆u̇(k+1) = r(k+1) (S13)

Updating:
t+∆tu(k+1) = t+∆tu(k) + γ̄∆u̇(k+1) (S14)

t+∆tu̇(k+1) = t+∆tu̇(k) + ∆u̇(k+1) (S15)

Here, C(k) =
dq

du̇
(t+∆tu̇(k), t+∆tu(k)), and K(k) =

dq

du
(t+∆tu̇(k), t+∆tu(k)).

The difference between the first and subsequent iterations in the update of u is
necessary to satisfy Equation S5. This generates the difference in the right-hand side of
the solution for the velocity update. In SL, Equation S2 is not used; rather, the
actomyosin complex is treated as a diffusing, over-damped particle with drag coefficient
η. The complex is subjected to thermal, elastic, and chemical energies, the latter
describing the actomyosin interaction and the ATP effect. In the equation in S1 Fig, the
biochemical and elastic (mechanical) components are separated as Ec and Ee,
respectively, and the third term describes the temperature effects. ω = 0 when the
myosin head is detached and 1 when it is attached. Γ(t) is a random term satisfying
< Γ(t) >= 0 and < Γ(t1),Γ(t2) >= 2δ(t1 − t2) (white noise). The total tension is
computed as:

Ttot = Ftot/Af (S16)

where Af is the cross-sectional area of one filament.
The work done by each ventricle is computed as the ejection flux multiplied by the

pressure at the valves minus the work done by injection. The efficiency of the whole
heart is computed as the ratio of total work to total ATP consumption.

At each time step ∆t and for each possible transition, a random number, uniformly
distributed between zero and one, is generated. The transition occurs if this value is less
than or equal to ∆tk, where k is the defined rate constant. ∆t = 1 µs in SRI, SRII, and
the KS approximation of SL, and ∆t = 1 ns in SL. The value of k is modified
accordingly. At the single cross-bridge and single sarcomere/fiber levels, the numerical
simulations of scenarios SRI and SRII and scenario SL differ as follows.

The algorithm for SRI and SRII is:

1. Generate a matrix of rate constants for each stretching level between −20 nm and
20 nm. The rate constants are given by Equation 4 and by trapezoidal integration
of Equation 3 for SRII and SRI, respectively (see main text).

2. Update the states of the TT units depending on the instantaneous Ca
concentration.
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3. Define the stable state of each myosin head (D, W, S0, S1, or S2) using the rate
constants kDW , kWD, kWS , kSD or the rate constants produced in step 1 (k12,
k21, k01, k10), depending on the stretching of the elastic component of the myosin
head.

4. Update the positions of each myosin head and actin filament, depending on the
setup and external conditions, and calculate the total force.

5. Increment the time step and return to Step 2 until the total time is equal to the
prescribed simulation time.

The algorithm for SL is slightly different:

1. Update the states of the TT units depending on the Ca concentration.

2. Define the stable state of each myosin head (D, W, S) using the rate constants
kDW , kWD, kWS , and kSD.

3. Using an implicit method, determine the position of each myosin head from
Equation 6.

4. Update the external conditions depending on the setup and calculate the total
force in the current time step.

5. Increment the time step and return to Step 1. Repeat until the total time is equal
to the prescribed simulation time.

To account for the different temperatures in the experimental observations of single
fibers and cardiac contraction, we include a factor Q10 in the definitions of kDW , kWD,
kWS , and kSD. We assume that the biochemical and mechanical energy components are
independent of temperature. The temperature effects on the oscillations are introduced
through κbT in the rate constants of SRI and SRII and in the Langevin equation for SL.
The temperature effect on the TT units is neglected. The Langevin approach is
unsuitable for multiscale analysis because of its intrinsic time step limitations. Instead,
we use the KS approximation of the SL. The algorithm is the same as that used for
SRII, but the rate constant matrix is generated by the KS approximation of the
Langevin equation (see Equation 6). To account for the oscillations within the minima
(and in the detached and weakly attached states), the position of each myosin head at
each time step is computed by randomly selecting a position from the corresponding
stationary probability distribution in the current state:

ps(x) = N exp(G(x, x0)/κbT )

where N is the normalization constant. This action modifies the last term in
Equation S2 to account for the shifting of the total energy minima under the wide
minimum hypothesis.

S1.3 Comparison between the Langevin and
Kramers–Smoluchowski (KS) approximations

The numerical approximation to the system of Langevin equations describing the
motion of each myosin molecule has several advantages, as it reproduces the detailed
myosin dynamics, including the real effect of the energy barrier shape on the dwell time
of the protein and other phenomena that cannot be simulated by different approaches.
However, its applicability is limited by the long computation time, because the time
step for the analysis must be smaller than the typical timescale of the process. In the
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myosin analysis, the time step is a few nanoseconds, which is feasible for simulations of
single sarcomeres, but not for whole-heart simulations. For this reason, we adopt a rate
constant approach based on the KS approximation of the energy landscape used in SL
at the single sarcomere level. Here, we show that the approximation is sufficient for the
purpose of our study by comparing the results of the KS approximation with the force
clamp and the length step protocols in both SL and SRII. As shown in S3 Fig and S4
Fig, the approximation follows the general behavior of the SL model, and remains
clearly distinct from the SRII results. In the isokinetic contraction, the agreement is
particularly strong at intermediate levels of tension (S3 Fig).

At low tensions, the KS approximation slightly overestimates the contraction
velocity and the total tension. However, the recovery velocity after a small length
change is similar to the SL case, as shown in S4 Fig

S2 Tension recovery after a small step

When a small, fast length change is imposed on an isometrically contracting muscle, the
tension changes almost instantaneously from T0 to T1, then exponentially recovers
toward T0 with a rate r, settling at a new value T2. The initial change is related to the
mechanical relaxation of the elastic element, and the recovery is related to the
equilibrium change caused by the power stroke [6]. r, T1, and T2 depend on the imposed
step δ. As experimentally observed, the T2 value is somehow hidden by the detachment
of old myosin heads and the attachment of new motors. To overcome this problem, we
consider the population of cross-bridges in S2 to reach a maximum when the old
cross-bridges have completed the power stroke. For this reason, we define the values of
the variable T2(δ) and r(δ) at the time of the maximum in S2 (see S5 Fig).

The simulated data for T1 and T2 (see S6 Fig) are very similar in the three scenarios,
and are comparable to the experimental behavior.
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Table S1. Parameter values and their descriptions

Parameter Value Description
k 2-0.4 pN/nm myosin stiffness
η 70 pNns/nm myosin drag coefficient
NXB 38 myosin per filament
Nfil 240-12 number of actin filaments (sarcomere - heart)
LB 50 nm bare zone
LM 825 nm myosin filament length
LA 1224 nm actin filament length
dTT 36 nm distance between two TT units
QCa 55 inhibiting parameter in absence of Ca
DT 1 µs time step in single-sarcomere simulations
T 4− 37 ◦C temperature in single-sarcomere heart simulation
κb 0.0138 pN nm/K Boltzmann constant
Xtr 10 nm threshold distance for zero attachment rate
k0
WD 20γ2s−1 basic W to D rate
k0
DW 72 s−1 basic D to W rate
αa 9 s−1nm−1 stretch dependence of W to S rate
αd 0.54αa stretch dependence of S to D rate
DN 50 s−1 S to D rate in compression
as 10 nm factor of overlapping and overstretching
Ca∗on = Caon 4800 s−1µM−1 attachment Ca rate on TT unit
Ca∗off = Caoff 9600 s−1 detachment Ca rate on TT unit

Af 10−3 µ2 cross-sectional area per filament

Table S2. Attachment–detachment events and backward jumps (BJ)
(normalized by NXB) in the three scenarios, in three different regions of
the left ventricle wall.

Events/ B J Endo Middle Epi
SRI 11.2/0.75 10.5/0.6 7.8/0.3
SRII 10.0/3.2 9.5/2.2 6.11/1.5
SL 10.5/63.2 9.2/47.2 5.3/26.7
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