Modeling Thermal Fluctuations in Actomyosin Stable States: An Overlooked Property in Muscle Models

Lorenzo Marcucci^{1,2*}, Takumi Washio^{3,9}, Toshio Yanagida^{2,9},

1 Department of Biomedical Sciences, Padova University, Padova, Italy

2 Quantitative Biology Center, RIKEN, Suita, Japan

3 Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan

∂These authors contributed equally to this work.

* lorenzo.marcucci@gmail.com

		-
Parameter	Value	Description
k	2-0.4 pN/nm	myosin stiffness
η	70 pNns/nm	myosin drag coefficient
N _{XB}	38	myosin per filament
N _{fil}	240-12	number of actin filaments (sarcomere - heart)
LB	50 nm	bare zone
LM	825 nm	myosin filament length
LA	1224 nm	actin filament length
d_{TT}	36 nm	distance between two TT units
Q_{Ca}	55	inhibiting parameter in absence of Ca
DT	$1 \ \mu s$	time step in single-sarcomere simulations
Т	$4-37^{\circ}\mathrm{C}$	temperature in single-sarcomere heart simulation
κ_b	0.0138 pN nm/K	Boltzmann constant
$X_t r$	10 nm	threshold distance for zero attachment rate
k_{WD}^0	$20\gamma^2 s^{-1}$	basic W to D rate
k_{DW}^0	$72 \ s^{-1}$	basic D to W rate
α_a	$9 \ s^{-1} nm^{-1}$	stretch dependence of W to S rate
α_d	$0.54\alpha_a$	stretch dependence of S to D rate
D_N	$50 \ s^{-1}$	S to D rate in compression
a_s	10 nm	factor of overlapping and overstretching
$Ca_{on}^* = Ca_{on}$	$4800 \ s^{-1} \mu M^{-1}$	attachment Ca rate on TT unit
$Ca_{off}^* = Ca_{off}$	9600 s^{-1}	detachment Ca rate on TT unit
A_f	$10^{-3} \mu^2$	cross-sectional area per filament

Table S1. Parameter values and their descriptions