Accessing Both Retention and Inversion Pathways in Stereospecific, Nickel-Catalyzed Miyaura Borylations of Allylic Pivalates

Qi Zhou, Harathi D. Srinivas, Songnan Zhang, Mary P. Watson*

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716

mpwatson@udel.edu

Supporting Information

General Information	S2
Leaving Group Effects	S3
Borylation of Allylic Pivalates	
General Procedure A: Borvlation with Retention of Configuration	S4
General Procedure B: Borylation with Inversion of Configuration	S5
General Procedure C: Oxidation of Allylic Boronates to Allylic Alcohols for	
Determination of Enantiomeric Excess (ee).	S6
Use of Other Diboron Reagents	S 26
Bis(neopentyl glycolato)diboron	\$26
Bis(hexylene glycolato)diboron	S27
Preparation of Potassium Trifluoroborate Salt 4q	S27
Preparation of Potassium Trifluoroborate Salt (R)-7	S29
Mechanistic Experiments	S 31
Solvent Effect	\$31
Leaving Group Effect: Hammett Correlation	S33
Addition of Benzonitriles: Hammett Correlation	S34
Preparation of Allylic Pivalates	S 36
General Procedure D: Preparation of (S,E)-4-(3-methoxyphenyl)but-3-en-2-y	yl
pivalate ((<i>S</i>)-1f)	\$36
Preparation of Allylic Alcohols	
General Procedure E: Preparation of (<i>R.E</i>)-4-(4-(methylthio)phenyl)but-3-ei	n-2-ol
((<i>R</i>)-3c) via CBS Reduction	
General Procedure F: Preparation of (S,E)-4-(4-isopropylphenyl)but-3-en-2-	ol ((S)-
3b) via Kinetic Resolution	S43
Preparation of Allylic Alcohols	S44
Preparation of (S,E)-1-phenylhept-2-en-1-ol ((S)-3r).	\$45
NMR Spectra	S47
HPLC Traces	S 135

General Information

Reactions were performed in oven-dried vials with Teflon-lined caps or in ovendried round-bottomed flasks unless otherwise noted. Flasks were fitted with rubber septa, and reactions were conducted under a positive pressure of N₂. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed on silica gel 60 (40-63 µm, 60Å) unless otherwise noted. Commercial reagents were purchased from Sigma Aldrich, Acros, Fisher, Strem, TCI, Combi Blocks, Alfa Aesar, or Cambridge Isotopes Laboratories and used as received with the following exceptions: Potassium phosphate and bis(pinacolato)diboron were purchased from Sigma Aldrich and immediately placed in a N₂-atmosphere glovebox for storage. Pivaloyl chloride was purchased from Acros and distilled before use. PhMe, CH₂Cl₂, MeCN, and THF were dried by passing through drying columns.¹ PhMe and MeCN were then degassed by sparging with N₂ and stored over activated 4Å MS in a N₂-atmosphere glovebox. Enantioenriched allylic alcohols are obtained via either CBS reduction of ketones or kinetic resolution of racemic allylic alcohols according to procedures reported in the literature.² Oven-dried potassium carbonate was added into CDCl₃ to remove trace amount of acid. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on both 400 MHz and 600 MHz spectrometers. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CHCl₃ = δ 7.26). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃ = δ 77.2). Data are represented as follows: chemical shift, multiplicity (br = broad, s =singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doublet of doublets, h = heptet), coupling constants in Hertz (Hz), integration. Infrared (IR) spectra

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs. R. H.: Rosen. R. K.: Timmers. F. J. Organometallics 1996.

² CBS reduction of ketones, see: (a) Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611. (b) Corey,

E. J.; Helal, C. J. Tetrahedron Lett. 1995, 36, 9153. Kinetic resolution of allylic alcohols, see: (c) Sasaki,

M.; Ikemoto, H.; Kawahata, M.; Yamaguchi, K.; Takeda, K. Chem. Eur. J. 2009, 15, 4663.

were obtained using FTIR spectrophotometers with material loaded onto a NaCl plate. The mass spectral data were obtained at the University of Delaware mass spectrometry facility. Optical rotations were measured using a 2.5 mL cell with a 0.1 dm path length. Melting points were taken on a Stuart SMP10 instrument.

Leaving Group Effects

The effect of various leaving groups was examined under stereoinvertive and stereoretentive conditions. Please note that these conditions are not the final optimized conditions.

Me	B ₂ pin ₂ (2.0 equiv) 1 mol % Ni(cod) ₂ 2.2 mol % BnPPh ₂	Me
Ph OR 0R 1a, 98% ee	K ₃ PO ₄ (2.0 equiv) MeCN (0.4 M), rt, 19 h	Ph Bpin 2a

Entry	R	Conversion (%) ^{<i>a</i>}	Yield (%) ^{<i>a</i>}	ee (%) ^b
1	Piv	>99	88	95
2	Ac	56	53	95
3	No.	88	69	92
4	Вос	86	44	95
5	C(O)NMe ₂	>99	71	92
6	$C(0)C_{6}F_{5}$	38	13	80

^{*a*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*b*} ee's of the subsequent alcohol (**3a**), formed via oxidation with H_2O_2 and NaOH. Determined by HPLC analysis using a chiral stationary phase.

Table S2. Leaving Group Effects Under Retention Conditions.

	Me	5 mol % NiBr 11 mol % P(c	5 mol % NiBr ₂ ·DME 11 mol % P(<i>o</i> -Tol) ₃						
Ph 1a, 98% ee K ₃ PO ₄ (2.0 equiv) PhMe (0.4 M), 80 °C, 28 h RETENTION Ph									
Entry	R	Conversion (%) ^{<i>a</i>}	Yield (%) ^{a}	ee (%) ^b					
1	Piv	91	85	97					
2	Ac	65	55	96					
3	No.	48	40	95					
4	Boc	>99	71	72					
5	C(O)NMe ₂	>99	75	94					
6	C(O)C ₆ F ₅	36	26	46					

Boping (2.0 equiv)

^{*a*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*b*} ee's of the subsequent alcohol (**3a**), formed via oxidation with H_2O_2 and NaOH. Determined by HPLC analysis using a chiral stationary phase.

Borylation of Allylic Pivalates

General Procedure A: Borylation with Retention of Configuration

In a N₂-atmosphere glovebox, Ni(cod)₂ (2.2 mg, 0.0080 mmol, 2 mol %), *t*-Bu-XantPhos (4.4 mg, 0.0088 mmol, 2.2 mol %) and K_3PO_4 (169.7 mg, 0.8 mmol, 2.0 equiv) were weighed into a 2-dram vial fitted with a magnetic stir bar. B₂pin₂ (203 mg, 0.80 mmol, 2.0 equiv) and allylic pivalate (0.40 mmol, 1.0 equiv) were added, followed by PhMe (1.0 mL, 0.4 M). The vial was capped with a Teflon-lined cap and removed from the glovebox. The mixture was stirred at room temperature for 24 h. The reaction mixture was then diluted with Et₂O (2.5 mL) and quickly filtered through a plug of silica gel and Celite[®], which was then rinsed with Et₂O (~ 15 mL). The filtrate was concentrated and then purified by silica gel chromatography to give the allylic boronate product. The α : γ ratios reported below are of isolated allylic boronates. The allylic boronate was then converted to the corresponding allylic alcohol via oxidation (see General Procedure C below) to determine the enantiomeric excess (ee).

General Procedure B: Borylation with Inversion of Configuration

In a N₂-atmosphere glovebox, Ni(cod)₂ (2.2 mg, 0.0080 mmol, 2 mol %), BnPPh₂ (4.9 mg, 0.0176 mmol, 4.4 mol %) and K₃PO₄ (169.7 mg, 0.80 mmol, 2.0 equiv) were weighed into a 2-dram vial fitted with a magnetic stir bar. B₂pin₂ (203 mg, 0.80 mmol, 2.0 equiv) and allylic pivalate (0.40 mmol, 1.0 equiv) were added, followed by MeCN (1.0 mL, 0.4 M). The vial was capped with a Teflon-lined cap and removed from the glovebox. The mixture was stirred at room temperature for 32 h. The reaction mixture was then diluted with Et₂O (2.5 mL) and quickly filtered through a plug of silica gel and Celite[®], which was then rinsed with Et₂O (~15 mL). The filtrate was concentrated and then purified by silica gel chromatography to give the allylic boronate product. The α : γ ratios reported below are of isolated allylic boronates. The allylic boronate was then converted to the corresponding allylic alcohol via oxidation (see General Procedure C below) to determine the enantiomeric excess (ee).

General Procedure C: Oxidation of Allylic Boronates to Allylic Alcohols for Determination of Enantiomeric Excess (ee).

A solution of (S,E)-2-(4-(benzothiophen-2-yl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((S)-2i, 10 mg, 0.0318 mmol, 1.0 equiv) and Et₂O (0.08 mL, 0.4M) was cooled to 0 °C. Aqueous NaOH (2 N, 0.029 mL, 0.058 mmol, 1.8 equiv) was added, followed by H₂O₂ (0.013 mL, 0.116 mmol, 3.6 equiv). The mixture was stirred at 0 °C for 10 min and then at room temperature for an additional 30 min. The reaction mixture was diluted with H₂O, and extracted with Et₂O. The organic layer was dried (MgSO₄), filtered, and concentrated to give (S)-3i (6.45 mg, 99%) with sufficient purity for HPLC analysis using a chiral stationary phase without further purification. The oxidations of other boronates were performed with different amounts of starting material.

(*R*,*E*)-4,4,5,5-Tetramethyl-2-(4-phenylbut-3-en-2-yl)-1,3,2-dioxaborolane ((*R*)–2a). Prepared via General Procedure A using pivalate 1a (prepared in 98% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2a (run 1: 78.4 mg, α : γ =20:1, 76%; run 2: 77.2 mg, α : γ =20:1, 75%) as colorless oil. [α]_D²⁴ = +15.9 (c 0.69, MeOH): ¹H NMR (600 MHz, CDCl₃) δ 7.37 – 7.33 (m, 2H), 7.30 – 7.26 (m, 2H), 7.19 – 7.14 (m, 1H), 6.37 – 6.32 (m, 2H), 2.15 – 2.0 (m, 1H), 1.24 (s, 12H), 1.19 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 133.3, 128.4, 127.6, 126.5, 125.9, 83.3, 24.7, 24.6, 14.8; ^{3 11}B NMR (193 MHz, CDCl₃) δ 33.2; FTIR (NaCl/thin film) 2977, 1457, 1379, 1352, 1322, 1143, 965, 750, 695 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₆H₂₂BO₂: 257.1713, found: 257.1734.

³ In some cases, the allylic carbon is not observed due to quadrupolar broadening caused by ¹¹B.

Boronate (*R*)-2a was oxidized to alcohol (*R*)-3a via General Procedure C. The enantiomeric excess was determined to be 97% (run 1: 96% ee; run 2: 97% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 15.323 min, t_R(minor) = 23.090 min. The spectral data of this alcohol matched that of alcohol 3a as prepared via General Procedure E (see below).

The borylation of pivalate **1a** was also performed on 5-mmol scale, following General Procedure A. In a N₂-atmosphere glovebox, pivalate **1a** (116.1 mg, 5.0 mmol, 1.0 equiv), Ni(cod)₂ (27.5 mg, 0.10 mmol, 2 mol %), *t*-Bu-XantPhos (55 mg, 0.11 mmol, 2.2 mol %) and K₃PO₄ (2.12 g, 10 mmol, 2.0 equiv) were weighed into a heavy wall pressure vessel. B₂pin₂ (2.54 g, 10 mmol, 2.0 equiv) and pivalate **1a** (1.16 g, 5 mmol, 1.0 equiv) were added, followed by PhMe (12.5 mL, 0.4 M). The vessel was sealed, and removed from the glovebox. The mixture was stirred at room temperature for 24 h, then diluted with Et₂O (25 mL), and filtered through a plug of silica gel and Celite[®]. The filter cake was rinsed with Et₂O (50 mL). The filtrate was concentrated and then purified by silica gel chromatography (0–2% Et₂O/hexanes) to give the (*R*)-**2a** (938 mg, 73%, α : γ =20:1). Boronate (*R*)-**2a** was then oxidized to alcohol (*R*)-**3a** via General Procedure C. The enantiomeric excess was determined to be 93%.

(*S,E*)-4,4,5,5-Tetramethyl-2-(4-phenylbut-3-en-2-yl)-1,3,2-dioxaborolane ((*S*)-2a). Prepared via General Procedure B using pivalate 1a (prepared in 98% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2a (run 1: 88.2 mg, α : γ =7:1, 85%; run 2: 83.0 mg, α : γ =9:1, 80%) as colorless oil. [α]_D²⁴ = -27.8 (c 0.72, CHCl₃). The spectral data of this compound matches that described above.

Boronate (S)-2a was oxidized to alcohol (S)-3a via General Procedure C. The enantiomeric excess was determined to be 87% (run 1: 86% ee; run 2: 87% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 22.980 min, t_R(minor) = 15.249 min. The spectral data of this alcohol matched that of alcohol 3a as prepared via General Procedure E (see below).

(*S*,*E*)-2-(4-(4-isopropylphenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*S*)-2b). Prepared via General Procedure A using pivalate 1b (prepared in 92% ee). The crude mixture was purified by silica gel chromatography (0–4% Et₂O/hexanes) to give (*S*)-2b (run 1: 93.8 mg, 78%, α:γ>20:1; run 2: 96.8 mg, 81%, α:γ>20:1) as colorless oil. $[\alpha]_D^{24} = +6.0$ (c 2.6, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 6.37 – 6.22 (m, 2H), 2.87 (h, *J* = 6.9 Hz, 1H), 2.04 (p, *J* = 7.2 Hz, 1H), 1.25 – 1.22 (m, 18H), 1.18 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 147.4, 136.1, 132.5, 127.6, 126.6, 126.0, 83.4, 33.9, 24.9, 24.8, 24.1, 15.1;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.2; FTIR (NaCl/thin film) 2961, 2872, 1653, 1558, 1507, 1457, 1379, 1325, 1143, 966, 855 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₉H₂₉BO₂: 300.2261, found: 300.2273.

Boronate (*S*)-**2b** was oxidized to alcohol (*S*)-**3b** via General Procedure C. The enantiomeric excess was determined to be 84% (run 1: 84% ee; run 2: 84% ee) by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 4% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 8.743 min, t_R(minor) = 9.345 min. The spectral data of this alcohol matched that of alcohol **3b** as prepared via General Procedure F (see below).

(R,E)-2-(4-(4-isopropylphenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane ((*R***)-2b).** Prepared via General Procedure B using pivalate **1b** (prepared in 92% ee). The crude mixture was purified by silica gel chromatography (0–4% Et₂O/hexanes) to give (*R*)-**2b** (run 1: 90.1 mg, α : γ =10:1, 75%; run 2: 97.5 mg, 81%, α : γ =10:1) as a colorless oil. [α]_D²⁴ = -12.4 (c 2.6, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-**2b** was oxidized to alcohol (*R*)-**3b** via General Procedure C. The enantiomeric excess was determined to be 84% (run 1: 84% ee; run 2: 83% ee) by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 4% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 9.363 min, t_R(minor) = 8.748 min. The spectral data of this alcohol matched that of alcohol **3b** as prepared via General Procedure F (see below).

(R,E)-4,4,5,5-tetramethyl-2-(4-(4-(methylthio)phenyl)but-3-en-2-yl)-1,3,2-

dioxaborolane ((*R***)-2c).** Prepared via General Procedure A using pivalate **1c** (prepared in 93% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-**2c** (run 1: 75.6 mg, α : γ =20:1, 62%; run 2: 78 mg, α : γ =15:1 64%) as pale yellow, waxy solid. [α]_D²⁴ = +10.9 (c 2.84, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 8.4 Hz, 2H), 7.20 – 7.17 (m, 2H), 6.33 – 6.26 (m, 2H), 2.47 (s, 3H), 2.08 – 2.01 (m, 1H), 1.24 (s, 12H), 1.18 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 136.2, 135.7, 133.1, 127.2, 127.1, 126.5, 83.4, 24.9, 24.8, 16.4, 15.0; ^{3 11}B NMR (193 MHz, CDCl₃) δ 33.2. FTIR (NaCl/thin film) 2976, 2924, 2871, 1652, 1558, 1493, 1373, 1321, 1143, 966 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₇H₂₅BO₂S: 304.1668, found: 304.1680.

Boronate (*R*)-2c was oxidized to alcohol (*R*)-3c via General Procedure C. The enantiomeric excess was determined to be 88% (run 1: 88% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 6% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 13.108 min, t_R(minor) = 15.130 min. The spectral data of this alcohol matched that of alcohol 3c as prepared via General Procedure F (see below).

(*S*,*E*)-4,4,5,5-tetramethyl-2-(4-(4-(methylthio)phenyl)but-3-en-2-yl)-1,3,2dioxaborolane ((*S*)-2c). Prepared via General Procedure B using pivalate 1c (prepared in

93% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (S)-2c (run 1: 76.8 mg, α : γ =6:1, 63%; run 2: 70.7 mg, α : γ =7:1, 58%) as pale yellow, waxy solid. [α]_D²⁴ = -10.4 (c 2.30, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*S*)-2c was oxidized to alcohol (*S*)-3c via General Procedure C. The enantiomeric excess was determined to be 86% (run 1: 87% ee; run 2: 84% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 6% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 15.145 min, t_R(minor) = 13.127 min. The spectral data of this alcohol matched that of alcohol 3c as prepared via General Procedure F (see below).

(*R*,*E*)-2-(4-(4-fluorophenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*R*)-2d). Prepared via General Procedure A using pivalate 1d (prepared in 97% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2d (run 1: 77.5 mg, 70%, α : γ =20:1; run 2: 88.8 mg, α : γ >20:1, 80%) as pale yellow oil. [α]_D²⁴ = +7.4 (c 2.4, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 6.99 – 6.94 (m, 2H), 6.31 (d, *J* = 15.9 Hz, 1H), 6.24 (dd, *J* = 15.9, 7.3 Hz, 1H), 2.07 –2.01 (m, 1H), 1.24 (s, 12H), 1.18 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.8 (d, *J*_{C-F} = 245.1 Hz), 134.6 (d, *J*_{C-F} = 3.2 Hz), 133.2 (d, *J*_{C-F} = 2.2 Hz, olefin carbon), 127.4 (d, *J*_{C-F} = 7.8 Hz), 126.6, 115.3 (d, *J*_{C-F} = 21.3 Hz), 83.5, 24.87, 24.81, 15.0; ^{3 11}B NMR (193 MHz, CDCl₃) δ 33.1; FTIR (NaCl/thin film) 2979, 2923, 1652, 159, 1507, 1456, 1373, 1226, 1145, 982, 851, 699 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₆H₂₂BFO₂: 276.1697, found: 276.1674.

Boronate (*R*)-2d was oxidized to alcohol (*R*)-3d via General Procedure C. The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRALPAK IA, 0.7 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 29.973 min, t_R(minor) = 28.727 min. The spectral data of this alcohol matched that of alcohol 3d as prepared via General Procedure E (see below).

(S,E)-2-(4-(4-fluorophenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

((*S*)-2d). Prepared via General Procedure B using pivalate 1d (prepared in 97% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2d (run 1: 82.2 mg, α : γ =7:1, 74%; run 2: 70.7 mg, α : γ =6:1, 67%) as pale yellow oil. $[\alpha]_D^{24} = -8.5$ (c 2.35, CHCl₃). The spectral data of this compound matches that described above.

Boronate (S)-2d was oxidized to alcohol (S)-3d via General Procedure C. The enantiomeric excess was determined to be 89% (run 1: 89% ee; run 2: 88% ee) by chiral HPLC analysis (CHIRALPAK IA, 0.7 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 28.547 min, t_R(minor) = 29.818 min. The spectral data of this alcohol matched that of alcohol 3d as prepared via General Procedure E (see below).

(*S*,*E*)-2-(4-(4-chlorophenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*S*)-2e). Prepared via General Procedure A using pivalate 1e (prepared in 96% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2e (run 1: 78 mg, 67%, α: γ >20:1; run 2: 75.6 mg, α: γ >20:1, 65%) as pale yellow, waxy solid. [α]_D²⁴ = -5.9 (c 2.52, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.25 – 7.21 (m, 2H), 6.35 – 6.26 (m, 2H), 2.08 – 2.02 (m, 1H) 1.24 (s, 12H), 1.18 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 136.9, 134.3, 132.1, 128.6, 127.2, 126.6, 83.5, 24.9, 24.8, 14.9;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.1; FTIR (NaCl/thin film) 2978, 2931, 2874, 1653, 1490, 1373, 1324, 1143, 1090, 854, 807 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₆H₂₂BClO₂: 292.1401, found: 292.1376.

Boronate (S)-2e was oxidized to alcohol (S)-3e via General Procedure C. The enantiomeric excess was determined to be 87% (run 1: 88% ee; run 2: 86% ee) by chiral

HPLC analysis (CHIRALPAK IA, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 22.413 min, t_R(minor) = 25.711 min. The spectral data of this alcohol matched that of alcohol **3e** as prepared via General Procedure E (see below).

(*R*,*E*)-2-(4-(4-chlorophenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

((*R*)-2e). Prepared via General Procedure B using pivalate 1e (prepared in 97% ee) except with 5 mol% Ni(cod)₂ and 11 mol % BnPPh₂ for 29 h. The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2e (run 1: 60.7 mg, α : γ =8:1, 52%; run 2: 59 mg, α : γ =5:1, 50%) as pale yellow oil. [α]_D²⁴ = +6.7 (c 1.92, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-2e was oxidized to alcohol (*R*)-3e via General Procedure C. The enantiomeric excess was determined to be 82% (run 1: 82% ee; run 2: 81% ee) by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 25.679 min, t_R(minor) = 22.319 min. The spectral data of this alcohol matched that of alcohol **3e** as prepared via General Procedure E (see below).

(S,E)-2-(4-(3-methoxyphenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((S)-2f). Prepared via General Procedure A using pivalate 1f (prepared in 98% ee). The crude mixture was purified by silica gel chromatography (2–5% Et₂O/hexanes) to give (*S*)-2f (run 1: 76.1 mg, 66%, α : γ =14:1; run 2: 81 mg, α : γ =13:1, 70%) as a colorless oil. [α]_D²⁴ = +8.5 (c 1.63, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.22 – 7.17 (m, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.91 – 6.88 (m, 1H), 6.73 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.38 – 6.29 (m, 2H), 3.81 (s, 3H), 2.08 – 2.02 (m, 1H), 1.24 (s, 12H), 1.19 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.9, 139.9, 133.8, 129.5, 127.7, 118.8, 112.3, 111.3, 83.4, 55.3, 24.9, 24.8, 15.0;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.1; FTIR (NaCl/thin film) 2977, 1653, 1558, 1506, 1456, 1147, 980, 668 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₇H₂₅BO₃: 288.1897, found: 288.1915.

Boronate (*S*)-**2f** was oxidized to alcohol (*S*)-**3f** via General Procedure C. The enantiomeric excess was determined to be 95% (run 1: 95% ee; run 2: 94% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 5% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 17.987 min, t_R(minor) = 20.193 min. The spectral data of this alcohol matched that of alcohol **3f** as prepared via General Procedure F (see below).

(*R*,*E*)-2-(4-(3-methoxyphenyl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*R*)-2f). Prepared via General Procedure B using pivalate 1f (prepared in 98% ee). The crude mixture was purified by silica gel chromatography (2–5% Et₂O/hexanes) to give (*R*)-2f (run 1: 82.7 mg, α : γ =6:1, 72%; run 2: 78 mg, α : γ =6:1, 68%) as a colorless oil. [α]_D²⁴ = -5.3 (c 2.05, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-2f was oxidized to alcohol (*R*)-3f via General Procedure C. The enantiomeric excess was determined to be 90% (run 1: 90% ee; run 2: 89% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 5% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 20.030 min, t_R(minor) = 17.856 min. The spectral data of this alcohol matched that of alcohol **3f** as prepared via General Procedure F (see below).

(S,E)-4,4,5,5-Tetramethyl-2-(4-(o-tolyl)but-3-en-2-yl)-1,3,2-dioxaborolane ((S)-2g). Prepared via General Procedure A using pivalate 1g (prepared in 94% ee), except with 5 mol % Ni(cod)₂ and 5.5 mol % *t*-BuXantPhos. The crude mixture was purified by silica

gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-**2g** (run 1: 80.4 mg, α : γ =10:1, 74%; run 2: 77.4 mg, α : γ =15:1, 71%) as a colorless oil. [α]_D²⁴ = +18.2 (c 0.95, MeOH): ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 7.4 Hz, 1H), 7.06 – 7.02 (m, 3H), 6.46 (d, *J* = 15.8 Hz, 1H), 6.12 (dd, *J* = 15.7, 7.7 Hz, 1H), 2.25 (s, 3H), 2.07 – 1.95 (m, 1H), 1.18 (s, 12H), 1.13 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 137.4, 134.8, 134.7, 130.1, 126.5, 125.9, 125.5, 125.4, 83.2, 27.2, 24.74, 24.70, 19.9, 15.0; ¹¹B NMR (193 MHz, CDCl₃) δ 33.3; FTIR (NaCl/thin film) 2976, 1457, 1321, 1143, 966, 749 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₇H₂₄BO₂: 271.1869, found: 271.1873.

Boronate (S)-2g was oxidized to alcohol (S)-3g via General Procedure C. The enantiomeric excess was determined to be 93% (run 1: 93% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 16.057 min, t_R(minor) = 24.458 min. The spectral data of this alcohol matched that of alcohol 3g as prepared via General Procedure F (see below).

(*R*,*E*)-4,4,5,5-Tetramethyl-2-(4-(o-tolyl)but-3-en-2-yl)-1,3,2-dioxaborolane ((*R*)-2g). Prepared via General Procedure B using pivalate 1g (prepared in 94% ee) except using 5 mol % Ni(cod)₂ and 11 mol % BnPPh₂. The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2g (run 1: 83.4 mg, α : γ =10:1, 78%; run 2: 80.2 mg, α : γ =13:1, 75%) as a colorless oil. [α]_D²⁴ = -22.6 (c 0.83, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-2g was oxidized to alcohol (*R*)-3g via General Procedure C. The enantiomeric excess was determined to be 84% (run 1: 83% ee; run 2: 84% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 24.786 min, t_R(minor) = 16.280 min. The spectral data of this alcohol matched that of alcohol 3g as prepared via General Procedure F (see below).

(R,E)-4,4,5,5-tetramethyl-2-(4-(naphthalen-2-yl)but-3-en-2-yl)-1,3,2-dioxaborolane

((*R*)-2h). Prepared via General Procedure A using pivalate 1h (prepared in 97% ee). The crude mixture was purified by silica gel chromatography (0–3% Et₂O/hexanes) to give (*R*)-2h (run 1: 108.5 mg, 88%, α : γ >20:1; run 2: 99.7 mg, α : γ >20:1, 81%) as off-white solid (mp 78–81°C). [α]_D²⁴ = +10.8 (c 1.58, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.77 – 7.73 (m, 3H), 7.67 (s, 1H), 7.59 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.45 – 7.37 (m, 2H), 6.55 – 6.44 (m, 2H), 2.16 – 2.10 (m, 1H), 1.26 (s, 12H), 1.24 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 135.9, 134.0, 133.9, 132.7, 128.0, 127.93, 127.91, 127.7, 126.2, 125.4, 125.2, 123.9, 83.5, 24.9, 24.8, 15.0;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.3; FTIR (NaCl/thin film) 2980, 2920, 1683, 1635, 1558, 1506, 1456, 1142, 667 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₂₀H₂₅BO₂: 308.1948, found: 308.1947.

Boronate (*R*)-**2h** was oxidized to alcohol (*R*)-**3h** via General Procedure C. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 21.293 min, t_R(minor) = 23.576 min. The spectral data of this alcohol matched that of alcohol **3h** as prepared via General Procedure E (see below).

(S,E)-4,4,5,5-tetramethyl-2-(4-(naphthalen-2-yl)but-3-en-2-yl)-1,3,2-dioxaborolane

((S)-2h). Prepared via General Procedure B using pivalate 1h (prepared in 97% ee). The crude mixture was purified by silica gel chromatography (0–3% Et₂O/hexanes) to give (S)-2h (run 1: 64.1 mg, α : γ =9:1, 52%; run 2: 67.8 mg, α : γ =7:1, 55%) as off-white solid (mp 78–81°C). [α]_D²⁴ = -9.1 (c 3.08, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*S*)-**2h** was oxidized to alcohol (*S*)-**3h** via General Procedure C. The enantiomeric excess was determined to be 88% (run 1: 88% ee; run 2: 87% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 23.494 min, t_R(minor) = 21.244 min. The spectral data of this alcohol matched that of alcohol **3h** as prepared via General Procedure E (see below).

(S,E)-2-(4-(benzothiophen-2-yl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane ((*S*)-2i). Prepared via General Procedure A using pivalate 1i (prepared in 70% ee) except on a 0.30 mmol scale. The crude mixture was purified by silica gel chromatography (0–4% Et₂O/hexanes) to give (*S*)-2i (60 mg, 64%, α:γ>20:1) as a pale yellow, waxy solid. [α]_D²⁴ = +10.7 (c 1.9, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 7.9 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 7.2, 0.9 Hz, 1H), 7.25 – 7.22 (m, 1H), 7.03 (s, 1H), 6.61 – 6.55 (m, 1H), 6.29 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.11 – 2.06 (m, 1H), 1.25 (s, 12H), 1.21 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.0, 140.5, 138.6, 136.5, 124.3, 124.2, 123.2, 122.2, 121.9, 120.8, 83.6, 24.9, 24.8, 14.7; ^{3 11}B NMR (193 MHz, CDCl₃) δ 33.2; FTIR (NaCl/thin film) 2978, 1652, 1558, 1457, 1373, 1144, 981, 851 cm⁻¹; HRMS (CI+) [M]+H calculated for C₁₈H₂₄BO₂S: 315.1590, found: 315.1591.

Boronate (S)-2i was oxidized to alcohol (S)-3i via General Procedure C. The enantiomeric excess was determined to be 68% by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 21.095 min, t_R(minor) = 23.755 min. The spectral data of this alcohol matched that of alcohol 3i as prepared via General Procedure F (see below).

(*S,E*)-2-(4-(Furan-2-yl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*S*)-2j). Prepared via General Procedure A using pivalate 1j (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2j (run 1: 39.1 mg, α :γ > 20:1, 39%; run 2: 48.7 mg, α :γ > 20:1, 48%) as colorless oil. [α]_D²⁴ = +24.0 (c 0.71, MeOH): ¹H NMR (600 MHz, CDCl₃) δ 7.29 (m, 1H), 6.33 – 6.26 (m, 2H), 6.18 (dd, *J* = 16.0, 1.4 Hz, 1H), 6.10 (d, *J* = 3.2 Hz, 1H), 2.05 – 1.99 (m, 1H), 1.24 (s, 12H), 1.17 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 153.8, 140.9, 132.4, 116.5, 111.0, 105.4, 83.3, 24.7, 24.7, 14.6;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.3; FTIR (NaCl/thin film) 2977, 1457, 1373, 1351, 1323, 1143, 1011, 964, 728 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₄H₂₁BO₃: 248.1584, found: 248.1577.

Boronate (S)-2j was oxidized to alcohol (S)-3j via General Procedure C. The enantiomeric excess was determined to be 92% (run 1: 91% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALCEL OD-H, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 22.253 min, t_R(minor) = 25.273 min. The spectral data of this alcohol matched that of alcohol 3j as prepared via General Procedure F (see below).

(*R*,*E*)-2-(4-(Furan-2-yl)but-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*R*)-2j). Prepared via General Procedure B using pivalate 1j (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2j (run 1: 29.2 mg, α : γ =11:1, 30%; run 2: 31.6 mg, α : γ =14:1, 31%) as a colorless oil. [α]_D²⁴ = -26.8 (c 0.6, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-2j was oxidized to alcohol (*R*)-3j via General Procedure C. The enantiomeric excess was determined to be 77% (run 1: 77% ee; run 2: 76% ee) by chiral HPLC analysis (CHIRALCEL OD–H, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 24.874 min, t_R(minor) = 22.002 min. The spectral data of this alcohol matched that of alcohol 3j as prepared via General Procedure F (see below).

(*S*,*E*)-4,4,5,5-Tetramethyl-2-(1-phenylpent-1-en-3-yl)-1,3,2-dioxaborolane ((*S*)-2k). Prepared via General Procedure A using pivalate 1k (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2k (run 1: 94.0 mg, α:γ=10:1, 86%; run 2: 93.6 mg, α:γ=8:1, 86%) as colorless oil. $[\alpha]_D^{24}$ = +26.8 (c 0.87, MeOH): ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.33 (m, 2H), 7.29 – 7.27 (m, 2H), 7.18 – 7.15 (m, 1H), 6.36 (d, *J* = 15.7 Hz, 1H), 6.22 (dd, *J* = 15.8, 9.0 Hz, 1H), 1.93 – 1.89 (m, 1H), 1.72 – 1.65 (m, 1H), 1.58 – 1.51 (m, 1H), 1.25 (s, 6H), 1.24 (s, 6H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 131.9, 129.1, 128.4, 126.5, 125.9, 83.2, 24.8, 24.6, 24.0, 13.7; ^{3 11}B NMR (193 MHz, CDCl₃) δ 33.0; FTIR (NaCl/thin film) 2977, 1371, 1321, 1143, 967, 749, 694 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₇H₂₅BO₂: 272.1948, found: 272.1924.

Boronate (S)-2k was oxidized to alcohol (S)-3k via General Procedure C. The enantiomeric excess was determined to be 98% (run 1: 98% ee; run 2: 98% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 17.361 min, t_R(minor) = 28.554 min. The spectral data of this alcohol matched that of alcohol 3k as prepared via General Procedure F (see below).

(*R*,*E*)-4,4,5,5-Tetramethyl-2-(1-phenylpent-1-en-3-yl)-1,3,2-dioxaborolane ((*R*)-2k). Prepared via General Procedure B using pivalate 1k (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2k (run 1: 95.0 mg, α : γ =8:1, 87%; run 2: 93.9 mg, α : γ =8:1, 86%) as colorless oil. [α]_D²⁴= -22.1 (c 0.95, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-2k was oxidized to alcohol (*R*)-3k via General Procedure C. The enantiomeric excess was determined to be 91% (run 1: 91% ee; run 2: 90% ee) by chiral

HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); $t_R(major) = 28.625$ min, $t_R(minor) = 17.498$ min. The spectral data of this alcohol matched that of alcohol **3k** as prepared via General Procedure F (see below).

(S,E)-4,4,5,5-Tetramethyl-2-(4-methyl-1-phenylpent-1-en-3-yl)-1,3,2-dioxaborolane

((*S*)-21). Prepared via General Procedure A using pivalate 11 (prepared in 99% ee), except using 5 mol % Ni(cod)₂ and 5.5 mol % *t*-BuXantPhos at 40 °C. The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-21 (run 1: 89.8 mg, α : γ =2:1, 78%; run 2: 91.0 mg, α : γ =2:1, 79%) as colorless oil. [α]_D²⁴ = +15.7 (c 0.36, MeOH): ¹H NMR (600 MHz, CDCl₃, α -isomer) δ 7.35 – 7.34 (m, 2H), 7.29 – 7.27 (m, 2H), 7.18 – 7.17 (m, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 6.19 (dd, *J* = 15.8, 9.9 Hz, 1H), 1.95 – 1.93 (m, 1H), 1.74 (t, *J* = 9.3 Hz, 1H), 1.25 (s, 6H), 1.24 (s, 6H), 1.00 – 0.97 (m, 6H); ¹³C NMR (151 MHz, CDCl₃, α and γ mixture) δ 142.3, 138.3, 131.1, 130.0, 128.42, 128.37, 128.3, 128.2, 126.7, 126.5, 125.9, 125.2, 83.4, 83.2, 31.2, 30.0, 24.74, 24.66, 24.5, 22.7, 22.6, 22.1; ¹¹B NMR (193 MHz, CDCl₃) δ 32.6; FTIR (NaCl/thin film) 2977, 1371, 1320, 1142, 970, 853, 750, 695 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₁₈H₂₇BO₂: 286.2104, found: 286.2131.

Boronate (S)-21 was oxidized to alcohol (S)-31 via General Procedure C. The enantiomeric excess was determined to be 98% (run 1: 97% ee; run 2: 98% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 14.739 min, t_R(minor) = 22.980 min. The spectral data of this alcohol matched that of alcohol 31 as prepared via the General Procedure F (see below).

(*R*,*E*)-4,4,5,5-Tetramethyl-2-(4-methyl-1-phenylpent-1-en-3-yl)-1,3,2-dioxaborolane ((*R*)-2l). Prepared via General Procedure B using pivalate 1l (prepared in 99% ee), except using 5 mol % Ni(cod)₂ and 11 mol % *t*-BuXantPhos at 40 °C. The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2l (run 1: 94.0 mg, α : γ =3:2, 83%; run 2: 91.7 mg, α : γ =7:5, 81%) as colorless oil. [α]_D²⁴ = -11.6 (c 0.9, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-21 was oxidized to alcohol (*R*)-31 via General Procedure C. The enantiomeric excess was determined to be 80% (run 1: 79% ee; run 2: 80% ee) by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 22.643 min, t_R(minor) = 14.374 min. The spectral data of this alcohol matched that of alcohol 31 General Procedure F (see below).

(*S*,*E*)-2-(1,5-diphenylpent-1-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*S*)-2m). Prepared via General Procedure A using pivalate 1m (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2f (run 1: 104.7 mg, 75%, α: γ =14:1; run 2: 109.2 mg, α: γ =14:1, 78%) as a white solid (mp 87–90 °C). [α]_D²⁴ = -20.4 (c 4.4, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.30 (m, 2H), 7.31 – 7.26 (m, 4H), 7.21 – 7.16 (m, 4H), 6.39 (d, *J* = 15.8 Hz, 1H), 6.24 (dd, *J* = 15.8, 9.0 Hz, 1H), 2.74 – 2.65 (m, 1H), 2.64 – 2.56 (m, 1H), 2.09 – 2.01 (m, 1H), 2.00 – 1.92 (m, 1H), 1.89 – 1.78 (m, 1H), 1.25 (s, 6H), 1.24 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 142.7, 138.3, 131.6, 129.7, 128.7, 128.6, 128.4, 126.8, 126.1, 125.8, 83.5, 35.6, 32.8, 24.9, 24.8; ^{3 11}B NMR (193 MHz, CDCl₃) δ 32.9; FTIR (NaCl/thin film) 3024, 2977, 2928, 1653, 1495, 1456, 1370, 1323, 1142, 967, 750 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₂₃H₂₉BO₂: 348.2261, found: 348.2287.

Boronate (*S*)-**2m** was oxidized to alcohol (*S*)-**3m** via General Procedure C. The enantiomeric excess was determined to be 96% (run 1: 96% ee; run 2: 95% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major)

= 22.971 min, $t_R(minor)$ = 27.376 min. The spectral data of this alcohol matched that of alcohol **3m** as prepared via General Procedure F (see below).

(*R*,*E*)-2-(1,5-diphenylpent-1-en-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*R*)-2m). Prepared via General Procedure B using pivalate 1m (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2m (run 1: 107.6 mg, α : γ =14:1, 77%; run 2: 112.3 mg, α : γ =12:1, 81%) as a white solid (mp 87–90 °C). [α]_D²⁴ = +20.7 (c 3.46, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-**2m** was oxidized to alcohol (*R*)-**3m** via General Procedure C. The enantiomeric excess was determined to be 92% (run 1: 92% ee; run 2: 92% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 27.197 min, t_R(minor) = 22.849 min. The spectral data of this alcohol matched that of alcohol **3m** as prepared via General Procedure F (see below).

(*S*,*E*)-4,4,5,5-tetramethyl-2-(1-phenylhexa-1,5-dien-3-yl)-1,3,2-dioxaborolane ((*S*)-2n). Prepared via General Procedure A using pivalate 1n (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2n (run 1: 100 mg, α : γ >20:1, 88%; run 2: 91.4 mg, α : γ =18:1, 80%) as a pale yellow solid (mp 57–60 °C). [α]_D²⁴ = -2.8 (c 3.19, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.29 – 7.25 (m, 2H), 7.19 – 7.15 (m, 1H), 6.39 (d, *J* = 15.9 Hz, 1H), 6.23 (dd, *J* = 15.9, 8.7 Hz, 1H), 5.90 – 5.82 (m, 1H), 5.09 – 5.04 (m, 1H), 4.97 (dd, *J* = 10.2, 1.9 Hz, 1H), 2.45 – 2.37 (m, 1H), 2.34 – 2.27 (m, 1H), 2.12 – 2.07 (m, 1H), 1.242 (s, 6H), 1.236 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 138.1, 131.2, 129.4, 128.5, 126.7, 126.1,

115.3, 83.5, 35.2, 24.9, 24.8;^{3 11}B NMR (193 MHz, CDCl₃) δ 32.8; FTIR (NaCl/thin film) 3024, 2977, 2928, 1653, 1495, 1456, 1370, 1323, 1142, 967, 750 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₂₃H₂₉BO₂: 348.2261, found: 348.2287.

Boronate (*S*)-**2n** was oxidized to alcohol (*S*)-**3n** via General Procedure C. The enantiomeric excess was determined to be 77% (run 1: 75% ee; run 2: 79% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 15.203 min, t_R(minor) = 17.382 min. The spectral data of this alcohol matched that of alcohol **3n** as prepared via General Procedure F (see below).

(*R*,*E*)-4,4,5,5-tetramethyl-2-(1-phenylhexa-1,5-dien-3-yl)-1,3,2-dioxaborolane ((*R*)-2n). Prepared via General Procedure B using pivalate 1n (prepared in 99% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2n (run 1: 81.5 mg, α : γ =16:1, 72%; run 2: 80.5 mg, α : γ =20:1, 71%) as a white solid (mp 57–60 °C). [α]_D²⁴ = +13.6 (c 2.6, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-**2n** was oxidized to alcohol (*R*)-**3n** via General Procedure C. The enantiomeric excess was determined to be 88% (run 1: 89% ee; run 2: 87% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 2% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 17.361 min, t_R(minor) = 15.181 min. The spectral data of this alcohol matched that of alcohol **3n** as prepared via General Procedure F (see below).

(S,E)-4,4,5,5-Tetramethyl-2-(7-methyl-1-phenylocta-1,6-dien-3-yl)-1,3,2-

dioxaborolane ((S)-20). Prepared via General Procedure A using pivalate **10** (prepared in 78% ee). The crude mixture was purified by silica gel chromatography (0-2%)

Et₂O/hexanes) to give (*S*)-**20** (run 1: 122.8 mg, α:γ=10:1, 94%; run 2: 119.9 mg, α:γ=10:1, 92%) as colorless oil. $[\alpha]_D^{24} = +21.2$ (c 1.18, MeOH): ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.33 (m, 2H), 7.29 – 7.27 (m, 2H), 7.18 – 7.15 (m, 1H), 6.36 (d, *J* = 15.8 Hz, 1H), 6.21 (dd, *J* = 15.9, 9.0 Hz, 1H), 5.14 – 5.12 (m, 1H), 2.05 – 1.98 (m, 3H), 1.68 (s, 3H), 1.67 – 1.64 (m, 1H), 1.59 (s, 3H), 1.57 – 1.53 (m, 1H), 1.244 (s, 6H), 1.240 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 138.3, 131.8, 131.6, 129.1, 128.4, 126.5, 125.9, 124.5, 83.2, 30.9, 27.6, 25.7, 24.8, 24.6, 17.7;^{3 11}B NMR (193 MHz, CDCl₃) δ 32.1; FTIR (NaCl/thin film) 2977, 2927, 1448, 1371, 1321, 1143, 966, 854, 750, 695 cm⁻¹; HRMS (LIFDI) [M]+ calculated for C₂₁H₃₁BO₂: 326.2417, found: 326.2429.

Boronate (S)-20 was oxidized to alcohol (S)-30 via General Procedure C. The enantiomeric excess was determined to be 76% (run 1: 76% ee; run 2: 76% ee) by chiral HPLC analysis (CHIRALPAK IC, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 10.883 min, t_R(minor) = 13.071 min. The spectral data of this alcohol matched that of alcohol **30** as prepared via General Procedure F (see below).

(R,E)-4,4,5,5-Tetramethyl-2-(7-methyl-1-phenylocta-1,6-dien-3-yl)-1,3,2-

dioxaborolane ((*R***)-20).** Prepared via General Procedure B using pivalate **10** (prepared in 78% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-**20** (run 1: 109.3 mg, α : γ =10:1, 84%; run 2: 102.4 mg, α : γ =10:1, 78%) as colorless oil. [α]_D²⁴ = -17.0 (c 1.0, CHCl₃). The spectral data of this compound matches that described above.

Boronate (*R*)-20 was oxidized to alcohol (*R*)-30 via General Procedure C. The enantiomeric excess was determined to be 70% (run 1: 71% ee; run 2: 69% ee) by chiral HPLC analysis (CHIRALPAK IC, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 13.055 min, t_R(minor) = 10.880 min. The spectral data of this alcohol matches that of alcohol **30** as prepared via General Procedure F (see below).

(*S*,*E*)-2-(4-cyclohexylbut-3-en-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ((*S*)-2p). Prepared via General Procedure A using pivalate 1p (prepared in 99% ee) except using 5 mol % Ni(cod)₂ and 5.5 mol % *t*-BuXantPhos at 40 °C for 24 h. The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*S*)-2p (run 1: 96 mg, 91%; run 2: 94 mg, 89%) as a colorless oil. The α:γ ratio was determined after oxidation to alcohol (*S*)-3p (see below). $[\alpha]_D^{24} = -4.5$ (c 2.2, CHCl₃): ¹H NMR (600 MHz, C(O)(CD₃)₂) δ 5.43 (ddd, *J* = 15.7, 7.4, 1.2 Hz, 1H), 5.28 (ddd, *J* = 15.6, 6.9, 1.4 Hz, 1H), 1.89 (dt, *J* = 11.2, 3.9 Hz, 1H), 1.72 – 1.65 (m, 4H), 1.62 – 1.60 (m, 1H), 1.31 – 1.22 (m, 3H), 1.20 (s, 12H), 1.15 – 1.01 (m, 3H), 1.00 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, C(O)(CD₃)₂) δ 134.8, 131.1, 83.8, 41.9, 34.4, 27.1, 26.9, 25.2, 25.1, 15.8;^{3 11}B NMR (193 MHz, C(O)(CD₃)₂) δ 33.4; FTIR (NaCl/thin film) 2977, 924, 2851, 1378, 1353, 1144, 965 cm⁻¹; HRMS (CI+) [M]+H calculated for C₁₆H₃₀BO₂: 265.2339, found: 265.2344.

Boronate (S)-2p was oxidized to alcohol (S)-3p via General Procedure C to determine the α : γ ratio (run 1: α : γ =14:1; run 2: α : γ =12:1).

The enantiomeric excess of (*S*)-**2p** was determined by conversion first to alcohol (*S*)-**3p** and then to ester (*S*)-**8p**, as described below. The use of *p*-nitrobenzoate (*S*)-**8p** has been previously described to determine the ee of alcohol **3p**.⁴

Boronate (S)-2p (33.4 mg, 0.126 mmol, 1.0 equiv) was oxidized to alcohol (S)-3p via General Procedure C in quantitative yield. The obtained alcohol (S)-3p was dissolved in CH₂Cl₂ (1 mL) and treated with Et₃N (35 μ L, 0.252 mmol, 2.0 equiv) and 4-

⁴ Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y. J. Chem. Commun. **2013**, 49, 9761.

nitrobenzoyl chloride (28 mg, 0.15 mmol, 1.2 equiv) at 0 °C. The solution was allowed to stir at rt for an additional 1h. The reaction was quenched with H₂O (2 mL), and the product was extracted with CH₂Cl₂ (2 x 1 mL). The organic layers were washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated. The crude mixture was purified via silica gel chromatography (3–5% Et₂O/hexanes) to afford ester (*S*)-**8p** as a sticky yellow oil (33.2 mg, 87%). The enantiomeric excess of (*S*)-**8p** was determined to be 91% (run 1: 92% ee; run 2: 90% ee) by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 1% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 14.953 min, t_R(minor) = 17.280 min. ¹H NMR (600 MHz, CDCl₃) δ 8.24 – 8.17 (m, 2H), 8.16 – 8.10 (m, 2H), 5.72 – 5.65 (m, 1H), 5.54 – 5.49 (m, 1H), 5.47 – 5.43 (m, 1H), 1.95 – 1.85 (m, 1H), 1.70 – 1.60 (m, 4H), 1.60 – 1.55 (m, 1H), 1.37 (d, *J* = 6.4 Hz, 3H), 1.25 – 1.13 (m, 2H), 1.13 – 0.90 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 163.9, 150.4, 140.0, 136.3, 130.7, 126.3, 123.4, 73.4, 40.2, 32.60, 32.56, 26.1, 26.0, 25.9, 20.5.

(*R*,*E*)-4,4,5,5-tetramethyl-2-(1-phenylhept-1-en-3-yl)-1,3,2-dioxaborolane ((*R*)-2r). Prepared via General Procedure B using pivalate 1r (prepared in 94% ee). The crude mixture was purified by silica gel chromatography (0–2% Et₂O/hexanes) to give (*R*)-2r (102.2 mg, α:γ=9:1, 85%) as a colorless oil. $[\alpha]_D^{24} = +6.9$ (c 2.6, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 7.3 Hz, 2H), 7.28 (d, *J* = 7.5 Hz, 2H), 7.16 (t, *J* = 7.3 Hz, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 6.21 (dd, *J* = 15.8, 9.1 Hz, 1H), 1.97 (q, *J* = 8.0 Hz, 1H), 1.64 (ddt, *J* = 13.1, 9.6, 6.4 Hz, 1H), 1.51 (td, *J* = 8.1, 3.4 Hz, 1H), 1.39 – 1.25 (m, 4H), 1.243 (s, 6H), 1.239 (s, 6H), 0.88 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.4, 132.3, 129.1, 128.5, 126.6, 126.0, 83.4, 31.6, 30.7, 24.9, 24.8, 22.9, 14.2;^{3 11}B NMR (193 MHz, CDCl₃) δ 33.0; FTIR (NaCl/thin film) 2929, 1652, 1558, 1456, 1373, 1143, 967, 852 cm⁻¹; HRMS (CI+) [M]+H calculated for C₁₉H₂₉BO₂: 301.2339, found: 301.2336.

Boronate (*R*)-**2r** was oxidized to alcohol (*R*)-**3r** via General Procedure C. The enantiomeric excess was determined to be 70% by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 12.018 min, t_R(minor) = 19.733 min. The spectral data of this alcohol matched that of alcohol **3r** reported in the literature.⁵

Use of Other Diboron Reagents

Bis(neopentyl glycolato)diboron

Retention Conditions: (*R*)-**5a** was prepared on 0.2-mmol scale following General Procedure A, except using bis(neopentyl glycolato)diboron (90.4 mg, 0.4 mmol, 2.0 equiv). Because (*R*)-**5a** was unstable to silica gel chromatography, the yield (77%, α : γ =18:1) was determined via ¹H NMR analysis of the crude reaction mixture with 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, 0.5 equiv) as internal standard. The enantiomeric excess (ee) was determined to be 93% after oxidation following General Procedure C.

Inversion Conditions: (*S*)-**5a** was prepared on 0.2-mmol scale following General Procedure B except using bis(neopentyl glycolato)diboron (90.4 mg, 0.4 mmol, 2.0 equiv). Because (*S*)-**5a** was unstable to silica gel chromatography, the yield (95%, α : γ =5:1) was determined via ¹H NMR analysis of the crude reaction mixture with 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, 0.5 equiv) as internal standard. The enantiomeric excess (ee) was determined to be 81% after oxidation following General Procedure C.

⁵ Stevens, B.D.; Bungard, C.J.; Nelson, S. J. Org. Chem. 2006, 71, 6397.

Bis(hexylene glycolato)diboron

Retention Conditions: (*R*)-**6a** was prepared on 0.2-mmol scale following General Procedure A except using bis(hexylene glycolato)diboron (101.6 mg, 0.4 mmol, 2.0 equiv). Because (*R*)-**6a** was unstable to silica gel chromatography, the yield (81%, α : γ =11:1) was determined via ¹H NMR analysis of the crude reaction mixture with 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, 0.5 equiv) as internal standard. The enantiomeric excess (ee) was determined to be 90% after oxidation following General Procedure C.

Inversion Conditions: (*S*)-**6a** was prepared on 0.2-mmol scale following General Procedure B except using bis(hexylene glycolato)diboron (101.6 mg, 0.4 mmol, 2.0 equiv). Because (*S*)-**6a** was unstable to silica gel chromatography, the yield (20%, α : γ <10:1) was determined via ¹H NMR analysis of the crude reaction mixture with 1,3,5-trimethoxybenzene (16.8 mg, 0.1 mmol, 0.5 equiv) as internal standard. The enantiomeric excess (ee) was determined to be 85% after oxidation following General Procedure C.

Preparation of Potassium Trifluoroborate Salt 4q

(S,E)-4,4,5,5-Tetramethyl-2-(4-(4-cyanophenyl)-but-3-en-2-yl)-1,3,2dioxaborolane ((S)-4q). *Retention Conditions*: (S)-4q was prepared using General

Procedure A using pivalate (S)-1q (108.5 mg, 0.4 mmol, prepared in 99% ee). Since (S)-2q was not stable on silica gel, the crude mixture was directly used in next step.

To a solution of crude boronate (*S*)-**2q** in methanol (3 mL) was added aq. KHF₂ (0.27 M, 3 mL, 0.8 mmol). The resulting mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated, washed with Et₂O/hexane (v/v = 1:10, 10 mL). Then the solid residue was extracted with acetone (10 mL) and filtered. The filtrate was concentrated to afford potassium trifluorobrate salt (*S*)-**4q** (run 1: 88.5 mg, α : γ >20:1, 84%, run 2: 87.0 mg, α : γ >20:1, 83%) as a white solid (m.p 131–133 °C). [α]_D²⁴ = +11.6 (c 1.7, MeOH); ¹H NMR (600 MHz, CD₃CN) δ 7.58 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 6.84 (dd, *J* = 16.0, 7.2 Hz, 1H), 6.16 (dd, *J* = 16.0, 1.6 Hz, 1H), 1.43 – 1.41 (m, 1H), 1.00 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (151 MHz, CD₃CN) δ 148.8, 145.8, 133.2, 126.4, 121.7, 120.3, 108.5, 14.7; ^{3 19}F NMR (565 MHz, CD₃CN) δ –145.5; ¹¹B NMR (193 MHz, CD₃CN) δ 3.98 (q, *J* = 60.1 Hz); FTIR (NaCl/thin film) 2976, 1854, 1599, 1181, 695.

Trifluoroborate salt (*S*)-4**q** was oxidized to alcohol (*S*)-3**q** via a literature procedure.⁶ The enantiomeric excess was determined to be 81% (run 1: 81% ee; run 2: 81% ee) by chiral HPLC analysis (CHIRALPAK IA, 1.0 mL/min, 6% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 20.539 min, t_R(minor) = 18.421 min. The spectral data of this alcohol matched that of alcohol 3**q** reported in the literature.⁴

In a separate experiment, crude boronate (*S*)-**2q** was oxidized to alcohol (*S*)-**3q** via General Procedure C. The enantiomeric excess was determined to be 84% by chiral HPLC analysis (CHIRALPAK IA, 1.0 mL/min, 6% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 20.638 min, t_R(minor) = 18.477 min.

⁶ Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623.

(*R*,*E*)-4,4,5,5-Tetramethyl-2-4-(4-cyanophenyl)-but-3-en-2-yl)-1,3,2-

dioxaborolane ((*R*)-4q). Inversion Conditions: (*R*)-4q was prepared via General Procedure B using pivalate (S)-1q (108.5 mg, 0.4 mmol, prepared in 99% ee). The crude mixture was used directly in the next step. To a solution of crude boronate (*R*)-2q in methanol (3 mL) was added aq. KHF₂ (0.27 M, 3 mL, 0.8 mmol). The resulting mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated, washed with Et₂O/hexane (v/v = 1:10, 10 mL). Then the solid residue was extracted with acetone (10 mL), and the filtered extract was concentrated to afford trifluorobrate salt (*R*)-4q (run 1: 86.0 mg, α : γ >20:1, 83%, run 2: 88.1 mg, α : γ >20:1, 83%) as a white solid (mp 130–133 °C). [α]_D²⁴ = -8.2 (0.97, MeOH). The spectral data of this compound matched that described above.

Trifluoroborate salt (*R*)-4**q** was oxidized to alcohol (*R*)-3**q** via a literature procedure.⁶ The enantiomeric excess was determined to be 78% (run 1: 77% ee; run 2: 79% ee) by chiral HPLC analysis (CHIRALPAK IA, 1.0 mL/min, 6% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 18.626 min, t_R(minor) = 20.767 min. The spectral data of this alcohol matched that of alcohol 3**q** prepared above.

Preparation of Potassium Trifluoroborate Salt (R)-7

In an oven-dried, round-bottomed flask, (*R*)-**2a** (163 mg, 0.63 mmol, 1.0 equiv), Pd/C (10% w, 34 mg, 0.0315 mmol, 0.05 equiv), and MeOH (3.1 mL, 0.2 M) were combined at room temperature. The flask was evacuated and refilled with H₂ three times. Under a H₂ balloon, the reaction mixture was stirred at room temperature for 3 h, after which analysis by ¹H NMR of the crude material showed full conversion. The solids were removed via filtration through a plug of Celite[®]. The filtrate was concentrated to give pale yellow oil (154.3 mg, 94%), which was dissolved in MeOH (0.4 mL) and slowly added to a solution of KHF₂ (166.3 mg, 2.13 mmol) in degassed H₂O (0.8 mL) at room temperature. The mixture was allowed to stir at room temperature for 30 min, and then concentrated under vacuum. The residue was extracted with acetone (3 x 5 mL), and solid particles were removed via filtration through a plug of Celite[®]. The filtrate was then concentrated, titrated with hexanes (3 x 5 mL), and dried under vacuum to give (R)-7 as white solid (122 mg, 86%). The spectral data of this compound matched that reported in the literature.⁷ The enantiomeric excess was determined after oxidation (below).

The procedure was adapted from that reported in the literature.⁸ In a roundbottomed flask was placed (*R*)-7 (15 mg, 0.0623 mmol, 1.0 equiv) and acetone (0.2 mL). The solution was cooled to 0 °C, and then a solution of oxone[®] (0.2 N in H₂O, 0.33 mL, 0.066 mmol, 1.05 equiv) was added. The mixture was stirred at 0 °C for 5 min, and then stirred at room temperature for another 10 min. The reaction was quenched with HCl (1 N). The product was extracted with Et₂O (5 mL). The organic layer was concentrated to give alcohol (*R*)-9 (8.6 mg, 92%) as a pale yellow oil. The enantiomeric excess was determined to be 95% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 1% *i*-PrOH/hexanes, λ =210 nm); t_R(major) = 29.035 min, t_R(minor) = 27.460 min. The spectral data of this compound match those reported in the literature.⁹

⁷ Li, L.; Zhao, S.B.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. J. Am. Soc. Chem.; **2014**, 136, 14027.

⁸ Molander, G.; Siddiqui, S.Z.; Fleury-Brégeot, N. Org. Synth. 2013, 90, 153.

⁹ Cheng, Y.N.; Wu, H.L.; Wu, P.Y.; Shen, Y.Y.; Uang, B.J. Chem. Asian J. 2012, 7, 2921.

Mechanistic Experiments

Solvent Effect

The borylation of pivalate **1a** was performed using General Procedure A, except on a 0.2-mmol scale and using the solvents indicated in Table S3. The reaction mixture was diluted with Et₂O and filtered through a plug of silica gel, which was then rinsed with additional Et₂O. After concentration of the filtrate, 1,3,5-trimethoxybenzene was added as an internal standard. The yield and α : γ ratio was determined by ¹H NMR analysis of the crude reaction mixture. Boronate **2a** was then oxidized to alcohol **3a** via General Procedure C, and the ee of alcohol **3a** was determined via HPLC analysis using a chiral stationary phase.

entry	Solvents	$E_{\mathrm{T}}^{\mathrm{N}b}$	εr ^c	$(\varepsilon_r-1)/(2\varepsilon_r+1)^d$	yield(%) ^e	α : γ^{f}	ee(%) ^g	er ^h	log(er)
1	Hexanes	0.009	1.88	0.1848	92	>20:1	97	65.67	1.82
2	Benzene	0.111	2.27	0.2292	99	>20:1	95	21.22	1.33
3	PhMe	0.099	2.38	0.2396	96	>20:1	91	39.00	1.59
4	EtOAc	0.228	6.02	0.385	94	>20:1	92	15.67	1.19
5	THF	0.207	7.58	0.472	94	>20:1	88	24.00	1.38
6	CH_2Cl_2	0.309	8.93	0.4205	24	>20:1	39	2.28	0.36
7	DMF	0.386	36.71	0.4798	60	>20:1	26	1.70	0.23
8	MeCN	0.46	35.94	0.4794	72	>20:1	-85	0.08	-0.19

Table S3. Effect of solvent on stereospecificity.^{*a*}

^{*a*} Conditions: pivalate **1a** (0.2 mmol, 1 equiv), Ni(cod)₂ (2 mol%), *t*-BuXantPhos (2.2 mol%), K₃PO₄ (2 equiv), solvent (1 mL, 0.4 M), rt, 24 h. ^{*b*} Empirical polarity parameter. ^{*c*} Relative permittivity value. ^{*d*} Kirkwood function. ^{*e*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*f*} Determined by ¹H NMR analysis of crude mixture. ^{*g*} Determined by HPLC analysis using a chiral stationary phase of the subsequent alcohol (**3a**), formed via General Procedure C. A negative number indicates that the opposite major enantiomer is formed (stereoinversion). ^{*h*} er = ratio of enantiomers (*R/S*).

Figure S2. Plot of log(er) vs. the Kirkwood function.

Leaving Group Effect: Hammett Correlation

The borylation of the benzoates was performed using General Procedure A, except on a 0.2-mmol scale and using the benzoates indicated in Table S4. The reaction mixture was diluted with Et₂O and filtered through a plug of silica gel, which was then rinsed with additional Et₂O. After concentration of the filtrate, 1,3,5-trimethoxybenzene was added as an internal standard. The yield and α : γ ratio was determined by ¹H NMR analysis of the crude reaction mixture. Boronate **2a** was then oxidized to alcohol **3a** via General Procedure C, and the ee of alcohol **3a** was determined via HPLC analysis using a chiral stationary phase.

entry	Х	σ	yield(%) ^b	α : γ^c	$ee(\%)^d$	er ^e	log(er)
1	OMe	-0.268	76	>20:1	82.7	10.55	1.023
2	Н	0	85	>20:1	81.2	9.68	0.986
3	F	0.062	50	>20:1	85.2	12.54	1.098
4	OCF ₃	0.35	86	>20:1	38.0	2.23	0.348
5	CF ₃	0.54	80	>20:1	41.2	2.4	0.38

Table S4. Hammett correlation between carboxylate and enantiomeric ratio.^a

^{*a*} Conditions: Benzoate (0.2 mmol, 1.0 equiv), Ni(cod)₂ (2 mol %), *t*-BuXantPhos (2.2 mol %), K₃PO₄ (2.0 equiv), PhMe (1.0 mL, 0.4 M), rt, 24 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR analysis of crude mixture. ^{*d*} Determined by HPLC analysis using a chiral stationary phase of the subsequent alcohol (**3a**), formed via General Procedure C. ^{*e*} er = ratio of enantiomers (*R/S*).

Figure S3. Hammett correlation between carboxylate and enantiomeric ratio.

Addition of Benzonitriles: Hammett Correlation

The borylation of pivalate **1a** was performed using General Procedure A, except on a 0.2-mmol scale and with the addition of the benzonitriles (3.0 equiv) listed in Table S5. Solid nitriles were added along with the other solid reagents. Liquid nitriles were added last, after the solvent. The reaction mixture was diluted with Et₂O and filtered through a plug of silica gel, which was then rinsed with additional Et₂O. After concentration of the filtrate, 1,3,5-trimethoxybenzene was added as an internal standard. The yield and α : γ ratio was determined by ¹H NMR analysis of the crude reaction mixture. Boronate **2a** was then oxidized to alcohol **3a** via General Procedure C, and the ee of alcohol **3a** was determined via HPLC analysis using a chiral stationary phase.

entry	Х	σ	yield(%) ^b	α : γ^{c}	$ee(\%)^d$	er ^e	log(er)
1	Н	0	79	11:1	33.4	2	0.301
2	F	0.062	84	11:1	37.7	2.21	0.344
3	CH_3	-0.17	65	11:1	15.1	1.36	0.134
4	Cl	0.227	82	11:1	55.4	3.48	0.542
5	CF ₃	0.54	89	11:1	70.5	5.78	0.762

Table S5. Hammett correlation between benzonitriles and enantiomeric ratio.^a

^{*a*} Conditions: pivalate **1a** (0.2 mmol, 1 equiv), Ni(cod)₂ (2 mol%), *t*-BuXantPhos (2.2 mol %), K₃PO₄ (2 equiv), nitrile (3 equiv), PhMe (1 mL, 0.4 M), rt, 24 h. ^{*b*} Determined by ¹H NMR analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*c*} Determined by ¹H NMR analysis of crude mixture. ^{*d*} Determined by HPLC analysis using a chiral stationary phase of the subsequent alcohol (**3a**), formed via General Procedure C. A negative number indicates that the opposite major enantiomer is formed (stereoinversion). ^{*e*} er = ratio of enantiomers (*R/S*).

Figure S4. Hammett correlation between benzonitrile and enantiomeric ratio.

Preparation of Allylic Pivalates

General Procedure D: Preparation of (S,E)-4-(3-methoxyphenyl)but-3-en-

2-yl pivalate ((S)-1f)

(S,E)-4-(3-Methoxyphenyl)but-3-en-2-ol ((S)-3f, 1.26 g, 7.08 mmol, 1.0 equiv, 99% ee), DMAP (173 mg, 1.42 mmol, 0.20 equiv), and CH₂Cl₂ (21 mL, 0.3 M) were combined. Et₃N (1.97 mL, 14.2 mmol, 2.0 equiv) and pivaloyl chloride (0.85 mL, 7.08 mmol, 1.0 equiv) were then added. The reaction mixture was stirred for 14 h at room temperature. H₂O (30 mL) was added. The mixture was extracted with CH₂Cl₂ (2 x 30 mL). The combined organic layers were washed with aq. KOH (2.0 M, 30 mL), dried (MgSO₄), filtered and concentrated. The resulting residue was purified by silica gel chromatography (5–40% EtOAc/hexanes) to give compound (S)-1f (1.36 g, 75%) as a colorless oil. The enantiomeric excess was determined to be 98% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 1% i-PrOH/hexane, λ =254 nm); t_R(major) = 5.555 min, $t_R(minor) = 7.792 \text{ min}$. $[\alpha]_D^{24} = +94.4 \text{ (c } 1.14, \text{ CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, J = 7.9 Hz, 1H), 7.01 – 6.95 (m, 1H), 6.93 – 6.29 (m, 1H), 6.83 – 6.77 (m, 1H), 6.60 - 6.52 (m, 1H), 6.18 (dd, J = 15.9, 6.4 Hz, 1H), 5.54 - 5.45 (m, 1H), 3.82 (s, 3H), 1.39 (d, J = 6.5 Hz, 3H), 1.21 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.9, 159.9, 138.0, 131.0, 129.7, 129.6, 119.3, 113.6, 111.9, 70.6, 55.4, 38.9, 27.3, 20.4; FTIR (NaCl/thin film) 2976, 2934, 2872, 2835, 1724, 1599, 1480, 1280, 1157, 1041, 968, 773 cm^{-1} ; HRMS (EI+) [M]+ calculated for C₁₆H₂₂O₃: 262.1569, found: 262.1570.

Allylic Pivalates (*R*)-1a, (*R*)-1d, (*S*)-1e, (*S*)-1f, (*R*)-1h, (*S*)-1j, (*S*)-1k and (*S*)-1q were prepared via General Procedure D and the spectral of these compounds match that reported by our group.¹⁰

(*S*,*E*)-4-(4-isopropylphenyl)but-3-en-2-yl pivalate (1b). Prepared as a colorless oil via General Procedure D using (*S*)-3b (92% ee). The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 0.5% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 4.722 min, t_R(minor) = 5.304 min. [α]_D²⁴ = +101.5 (c 1.13, CHCl₃): ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 2H), 7.20 – 7.15 (m, 2H), 6.60 – 6.53 (m, 1H), 6.14 (dd, *J* = 15.9, 6.6 Hz, 1H), 5.53 – 5.49 (m, 1H), 2.96 – 2.82 (m, 1H), 1.38 (d, *J* = 6.5 Hz, 3H), 1.24 (d, *J* = 6.9 Hz, 6H), 1.21 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 148.9, 134.2, 131.2, 128.3, 126.8, 126.7, 70.8, 38.9, 34.0, 27.3, 24.1, 20.5; FTIR (NaCl/thin film) 2961, 2932, 2871, 1726, 1479, 1457, 1280, 1162, 1040, 967 cm⁻¹; HRMS (EI+) [M]+ calculated for: C₁₈H₂₆O₂: 274.1933, found: 274.1952.

(R,E)-4-(4-(methylthio)phenyl)but-3-en-2-yl pivalate (1c). Prepared as a colorless oil via General Procedure D using (R)-3c (93% ee). The enantiomeric excess was determined

¹⁰ Srinivas, H. D.; Zhou, Q.; Watson, M.P. Org. Lett. 2014, 16, 3596.

to be 93% by chiral HPLC analysis (CHIRALPAK IA, 0.8 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 7.922 min, t_R(minor) = 8.812 min. [α]_D²⁴ = +100.9 (c 2.84, CHCl₃): ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.24 – 7.16 (m, 2H), 6.57 – 6.48 (m, 1H), 6.14 (dd, *J* = 16.0, 6.5 Hz, 1H), 5.54 – 5.42 (m, 1H), 2.48 (s, 3H), 1.38 (d, *J* = 6.5 Hz, 3H), 1.21 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 138.2, 133.5, 130.6, 128.6, 127.1, 126.6, 70.7, 38.9, 27.3, 20.5, 15.9; FTIR (NaCl/thin film) 2976, 2923, 1723, 1700, 1652, 1558, 1162, 976 cm⁻¹; HRMS (CI+) [M]+H calculated for C₁₆H₂₃O₂S: 279.1419, found: 279.1430.

(*S*,*E*)-4-(o-Tolyl)but-3-en-2-yl pivalate (1g). Prepared as a colorless oil via General Procedure D using (*S*)-3g (94% ee). The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 4.614 min, t_R(minor) = 4.300 min. [α]_D²⁴ = +41.9 (c 0.6, MeOH): ¹H NMR (400 MHz, C(O)(CD₃)₂) δ 7.52 – 7.42 (m, 1H), 7.21 – 7.13 (m, 3H), 6.86 (dd, *J* = 15.9, 1.3 Hz, 1H), 6.18 (dd, *J* = 15.9, 6.0 Hz, 1H), 5.55 – 5.45 (m, 1H), 2.33 (s, 3H), 1.39 (d, *J* = 6.5 Hz, 3H), 1.21 (s, 9H); ¹³C NMR (101 MHz, C(O)(CD₃)₂) δ 177.5, 136.5, 136.4, 131.6, 131.2, 129.1, 128.6, 127.1, 126.4, 71.2, 39.3, 27.5, 20.8, 19.9; FTIR (NaCl/thin film) 2976, 1727, 1281, 1161, 1040, 966, 749; HRMS (LIFDI) [M]+ calculated for C₁₆H₂₂O₂: 246.1620, found: 246.1639.

(*S*,*E*)-4-(benzothiophen-2-yl)but-3-en-2-yl pivalate (1i). Prepared as an off-white solid (mp 98–100 °C) via General Procedure D using (*S*)-3i (70% ee). The enantiomeric excess was determined to be 70% by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 7.816 min, t_R(minor) = 9.201 min. [α]_D²⁴ = +82.1 (c 1.16, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.78 – 7.73 (m, 1H), 7.71 – 7.66 (m, 1H),

7.42 – 7.30 (m, 2H), 7.16 (s, 1H), 6.83 – 6.78 (d, J = 15.6, 1H), 6.10 (dd, J = 15.7, 6.2 Hz, 1H), 5.56 – 5.45 (m, 1H), 1.41 (d, J = 6.5 Hz, 3H), 1.23 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 141.8, 140.1, 139.1, 131.5, 125.0, 124.9, 124.6, 123.64, 123.60, 122.3, 70.1, 39.0, 27.3, 20.3; FTIR (NaCl/thin film) 2973, 2933, 2870, 1723, 1478, 1279, 1152, 1036, 956, 743 cm⁻¹; HRMS (EI+) [M]+ calculated for C₁₇H₂₀O₂S: 288.1184, found: 288.1185.

(*S*,*E*)-4-Methyl-1-phenylpent-1-en-3-yl pivalate (11). Prepared as a colorless oil via General Procedure D using (*S*)-3l. (99% ee). The enantiomeric excess was determined to be 99% by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 1.0% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 4.747 min, t_R(minor) = 4.149 min. [a]_D²⁴ = +69.2 (c 0.24, MeOH): ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.36 (m, 2H), 7.34 – 7.29 (m, 2H), 7.28 – 7.21 (m, 1H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.13 (dd, *J* = 15.9, 7.2 Hz, 1H), 5.21 (ddd, *J* = 7.3, 6.1, 1.2 Hz, 1H), 1.97 (dq, *J* = 13.4, 6.7 Hz, 1H), 1.24 (s, 9H), 0.97 (dd, *J* = 8.7, 6.8 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 177.6, 136.6, 132.7, 127.7, 126.5, 126.5, 78.7, 39.0, 32.5, 27.2, 27.2, 18.3, 18.0; FTIR (NaCl/thin film) 3027, 2967, 2933, 2873, 1728, 1480, 1280, 1161, 967,747, 693 cm⁻¹; HRMS (CI) [M]+ calculated for C₁₇H₂₄O₂: 260.1776, found: 260.1758.

(*S*,*E*)-1,5-diphenylpent-1-en-3-yl pivalate (1m). Prepared as a pale yellow oil via General Procedure D using (*S*)-3m (99% ee). The enantiomeric excess was determined to be 99% by chiral HPLC analysis (CHIRALPAK IA, 1 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 6.342 min, t_R(minor) = 10.752 min. [α]_D²⁴ = +20.6 (c 0.87, CHCl₃): ¹H NMR (600 MHz, CDCl3) δ 7.39 – 7.35 (m, 2H), 7.34 – 7.27 (m, 4H), 7.26 – 7.23 (m, 2H) 7.22 – 7.16 (m, 3H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.16 (dd, *J* = 15.9, 7.0 Hz, 1H), 5.48 – 5.38 (m, 1H), 2.77 – 2.60 (m, 2H), 2.13 – 2.03 (m, 1H), 2.03 – 1.93 (m, 1H),

1.25 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 141.5, 136.6, 132.4, 128.7, 128.6, 128.5, 128.0, 127.8, 126.7, 126.1, 73.8, 39.1, 36.5, 31.7, 27.4; FTIR (NaCl/thin film) 3026, 2971, 2870, 1732, 1653, 1558, 1280, 1153, 965, 747, 694 cm⁻¹; HRMS (EI+) [M]+ calculated for C₂₂H₂₆O₂: 322.1933, found: 322.1935.

(*S,E*)-1-phenylhexa-1,5-dien-3-yl pivalate (1n). Prepared as a colorless oil via General Procedure D using (*S*)-3n (99% ee). The enantiomeric excess was determined to be 99% by chiral HPLC analysis (CHIRALPAK IC, 0.8 mL/min, 1% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 6.560 min, t_R(minor) = 7.178 min. [α]_D²⁴ = +59.1 (c 1.13, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.33 (m, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.22 (m, 1H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.16 (dd, *J* = 16.0, 6.8 Hz, 1H), 5.83 – 5.77 (m, 1H), 5.52 – 5.45 (m, 1H), 5.14 – 5.06 (m, 2H), 2.53 – 2.47 (m, 2H), 1.22 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 136.6, 133.4, 132.2, 128.7, 128.0, 127.5, 126.7, 118.2, 73.3, 39.4, 39.0, 27.3; FTIR (NaCl/thin film) 2973, 2932, 2871, 1723, 1478, 1278, 1153, 1035, 956, 743 cm⁻¹; HRMS (EI+) [M]+ calculated for 258.1620, found: 258.1615.

(*S,E*)-7-Methyl-1-phenylocta-1,6-dien-3-yl pivalate (10). Prepared as a colorless oil via General Procedure D using (*S*)-30 (80% ee). The enantiomeric excess was determined to be 78% by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 0.5% *i*-PrOH/hexane, λ =254 nm); t_R(major) = 6.508 min, t_R(minor) = 4.705 min. [α]_D²⁴ = +47.6 (c 0.59, MeOH): ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.29 (m, 2H), 7.25 – 7.23 (m, 2H), 7.19 – 7.15 (m, 1H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.06 (dd, *J* = 16.0, 7.0 Hz, 1H), 5.36 – 5.28 (m, 1H), 5.07 – 5.04 (m, 1H), 2.05 – 1.91 (m, *J* = 7.0 Hz, 2H), 1.77 – 1.66 (m, 1H), 1.66 – 1.58 (m, 4H), 1.52 (s, 3H), 1.15 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 177.7, 136.6, 132.3, 131.9, 128.5, 128.0, 127.8, 126.5, 123.4, 73.8, 38.9, 34.7, 27.2, 25.7, 23.8, 17.7;

FTIR (NaCl/thin film) 2970, 1728, 1280, 1153, 965, 748, 693; HRMS (LIFDI) [M]+ calculated for C₂₀H₂₈O₂: 300.2089, found: 300.2089.

(*S*,*E*)-4-cyclohexylbut-3-en-2-yl pivalate (1p). Prepared as a colorless oil via General Procedure D using (*S*)-3p (99% ee). The enantiomeric excess was considered to be 99% based on the ee of precursor alcohol (*S*)-3p. $[\alpha]_D^{24} = +59.1$ (c 1.35, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 5.61 (dd, J = 15.6, 6.5 Hz, 1H), 5.39 (dd, J = 15.6, 6.6 Hz, 1H), 5.34 – 5.23 (m, 1H), 1.97 – 1.88 (m, 1H), 1.75 – 1.60 (m, 5H), 1.30 – 1.24 (m, 5H), 1.18 (s, 9H), 1.17 – 1.10 (m, 1H), 1.10 – 1.00 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 177.9, 138.5, 127.3, 70.8, 40.3, 32.9, 32.8, 27.3, 26.3, 26.1, 20.5; FTIR (NaCl/thin film) 2976, 2926, 2852, 1728, 1449, 1281, 1162, 1043, 967 cm⁻¹; HRMS (CI+) [M]+H calculated for C₁₅H₂₇O₂: 239.2011, found: 239.2022.

(*S,E*)-1-phenylhept-2-en-1-yl pivalate (1r). Prepared as a colorless oil via General Procedure D using (*S*)-3r (94% ee). The enantiomeric excess was considered to be 94% based on the ee of precursor alcohol (*S*)-3r. $[\alpha]_D^{24} = +8.0$ (c 1.12, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.31 (m, 4H), 7.29 – 7.29 (m, 1H), 6.20 (d, *J* = 6.8 Hz, 1H), 5.73 (dd, *J* = 14.9, 6.8 Hz, 1H), 5.60 (dd, *J* = 15.4, 6.9 Hz, 1H), 2.10 – 2.00 (m, 2H), 1.39 – 1.26 (m, 4H), 1.22 (s, 9H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 177.5, 140.4, 134.6, 128.6, 128.5, 127.8, 126.7, 76.0, 39.0, 32.0, 31.2, 27.3, 22.3, 14.0; FTIR (NaCl/thin film) 2958, 2930, 2872, 1732, 1479, 1278, 1150, 967, 698 cm⁻¹; HRMS (EI+) [M]+ calculated for C₁₈H₂₆O₂: 274.1933, found: 274.1938.

Preparation of Allylic Alcohols

General Procedure E: Preparation of (R,E)-4-(4-(methylthio)phenyl)but-3-

en-2-ol ((R)-3c) via CBS Reduction

This procedure was adapted from that in the literature.² In an oven-dried roundbottomed flask, (E)-4-(4-isopropylphenyl)but-3-en-2-ol (1.08 g, 5.84 mmol, 1.0 equiv) was dissolved in 12 mL PhMe. Under a N_2 atmosphere, (S)-(-)-2-butyl-CBSoxazaborolidine (0.58 mL, 0.58 mmol, 1.0 M in PhMe, 0.1 equiv) was added. After stirring at room temperature for 15 min, the mixture was cooled to -78 °C, and catecholborane (1.24 mL, 11.68 mmol, 2.0 equiv) was added slowly. The mixture was stirred at -78 °C for additional 24 h. The reaction was guenched with sat. NaHCO₃ (10 mL). The crude product was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with aq. NaOH (1.5 M) until the color of the solution was light yellow, indicating the full removal of residual catecholborane. The organic layers were then treated with sat. NaCl, dried (MgSO₄), filtered, and concentrated. The resulting residue was purified by silica gel chromatography (50% Et₂O/hexanes) to give compound (R)-3c (920mg, 92%) as pale vellow solid (mp 97–99 °C). The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 6% i-PrOH/hexanes, $\lambda = 254$ nm); t_R(major) = 13.164 min, t_R(minor) = 15.211 min. $[\alpha]_{24}^{D}$ +39.7 (c 2.46, CHCl₃): ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 6.52 (d, J = 15.9 Hz, 1H), 6.22 (dd, J = 15.9, 6.4 Hz, 1H), 4.52 - 4.43 (pd, J = 6.4, 1.2 Hz, 1H), 2.48 (s, 3H), 1.59 (s, 1H), 1.37 (d, J = 6.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 138.0, 133.8, 133.1, 129.0, 127.0, 126.8, 69.1, 23.6, 16.0; FTIR (NaCl/thin film) 3317(brs), 2977, 2884, 1653, 1418, 1124, 970, 803 cm⁻¹; HRMS (CI+) [M]+H calculated for: C₁₁H₁₅OS: 195.0844, found: 195.0837.

General Procedure F: Preparation of (*S,E*)-4-(4-isopropylphenyl)but-3-en-2-ol ((*S*)-3b) via Kinetic Resolution

This procedure was adapated from that reported in the literature.² In an ovendried, 100-mL round-bottomed flask, L-(+)-DIPT (0.74 mL, 3.54 mmol, 0.3 equiv) was added to a suspension of (*E*)-4-(4-isopropylphenyl)but-3-en-2-ol (1.76g, 11.8 mmol, 1.0 equiv), 4 Å MS (0.85 g, finely ground before use), and CH₂Cl₂ (47 mL). The suspension was then cooled to -20 °C, and Ti(O-*i*Pr)₄ (1.06 mL, 3.54 mmol, 0.3 equiv) and TBHP (1.5 mL, 8.25 mmol, 5.5 M in decane, 0.7 equiv) were added. The mixture was stirred for 3 h at -20 °C. FeSO₄•7H₂O (6.5 g) and H₂O (40 mL) were then added, followed by tartaric acid (2.2 g), H₂O (20 mL), and aq. HCl (1.0 M, 30 mL) to dissolve the precipitate. The layers were separated. The organic layer was then washed with sat. NaCl, dried (Na₂SO₄), filtered, and concentrated. The resulting residue was purified by silica gel chromatography (15% Et₂O/hexanes) to give compound (*S*)-**3b** (240 mg, 27%) as colorless oil. The enantiomeric excess was determined to be 92% by chiral HPLC analysis (CHIRALPAK IB, 1 mL/min, 4% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 8.776 min, t_R(minor) = 9.385 min. [α]^D₂₄ = +16.2 (c 0.33, CHCl₃). The spectra data for this compound matches that reported in the literature.¹¹

¹¹ Gładkowski, W.; Skrobiszewski, A.; Mazur, M.; Siepka, M.; Pawlak, A.; Obmińska-Mrukowicz, B.; Białońska, A.; Poradowski, D.; Drynda, A.; Urbaniak, M.; *Tetrahedron*, **2013**, 69, 10414.

Preparation of Allylic Alcohols

(*R*)-3a¹², (*R*)-3d¹³, (*S*)-3e¹³, (*R*)-3h¹³ were prepared via General Procedure E. (*S*)-3b¹⁴, (*R*)-3c¹⁵, (*S*)-3f¹³, (*S*)-3i, (*S*)-3j¹³, (*S*)-3k¹⁵, (*S*)-3l¹², (*S*)-3m¹⁶, (*S*)-3n¹⁷, (*S*)-3o, (*S*)-3p¹⁸, and (*S*)-3q¹⁰ were prepared via General Procedure F.

((*S*)-3i). Prepared following General Procedure F. The enantiomeric excess was determined to be 70% by chiral HPLC analysis (CHIRALPAK IC, 1 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 21.095 min, t_R(minor) = 23.755 min. ¹H NMR (600 MHz, CDCl₃) δ 7.84 – 7.67 (m, 2H), 7.35 – 7.29 (m, 2H), 7.28 (s, 1H), 6.92 – 6.78 (m, 1H), 6.22 (dd, *J* = 15.6, 6.0 Hz, 1H), 4.58 – 4.50 (m, 1H), 1.62 (s, 1H), 1.42 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 142.0, 140.1, 138.9, 135.8, 124.7, 124.4, 123.4, 123.2, 123.0, 122.2, 68.5, 23.4.

¹² Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1998**, *120*, 13529.

¹³ He, P.; Liu, X.; Zheng, H.; Li, W.; Lin, L.; Feng, X. Org. Lett. 2012, 14, 5134.

¹⁴ Gładkowski, W.; Skrobiszewski, A.; Mazur, M.; Siepka, M.; Pawlak, A.; Obmińska-Mrukowicz, B.; Białońska, A.; Poradowski, D.; Drynda, A.; Urbaniak, M. *Tetrahedron* **2013**, *69*, 10414.

¹⁵ Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng, J. J. Org. Chem. 2010, 75, 2981.

¹⁶ Hodgson, D. M.; Persaud, R. S. D. Org. Biomol. Chem. 2012, 10, 7949.

¹⁷ Couto, T. R.; Freitas, J. C. R.; Cavalcanti, I. H.; Oliveira, R. A.; Menezes, P. H. *Tetrahedron* **2013**, *69*, 7006.

¹⁸ Barker, G.; Johnson, D. G.; Young, P. C.; Macgregor, S. A.; Lee, A.-L. Chem. Eur. J. 2015, 21, 13748.

((*S*)-30). Prepared as a colorless oil following General Procedure F in 41% yield. The enantiomeric excess was determined to be 80% by chiral HPLC analysis (CHIRALPAK IC, 1.0 mL/min, 3% *i*-PrOH/hexanes, λ =254 nm); t_R(major) = 10.883 min, t_R(minor) = 13.071 min. [a]^D₂₄ = +17.1 (c 0.26, MeOH): ¹H NMR (600 MHz, CDCl3) δ 7.42 - 7.20 (m, 5H), 6.58 (d, *J* = 15.9 Hz, 1H), 6.23 (dd, *J* = 15.9, 6.6 Hz, 1H), 5.16 (t, *J* = 7.2 Hz, 1H), 4.30 (q, *J* = 6.5 Hz, 1H), 2.12 (q, *J* = 7.5 Hz, 2H), 1.85 - 1.49 (m, 8H); ¹³C NMR (151 MHz, CDCl₃) δ 136.8, 132.5, 132.3, 130.2, 128.6, 127.6, 126.5, 123.9, 72.7, 37.3, 25.7, 24.1, 17.7; FTIR (NaCl/thin film) 3321, 2973, 2949, 2042, 1154, 776 cm⁻¹; HRMS (LIFDI) [M]+H calculated for: C₁₅H₂₀O: 216.1514, found: 216.1521.

The following procedure was adapted from that reported in the literature.¹⁹ In an oven-dried round-bottomed flask was placed (*S*)-BINOL (573 mg, 2 mmol, 0.4 equiv), Cy₂NH (50 μ L, 0.25 mmol, 0.05 equiv), and THF (20 mL). The mixture was cooled to 0 °C, before Et₂Zn (1.53 mL, 15 mmol, 3.0 equiv) was added. The mixture was then stirred at room temperature for 16 h. 1-Hexyne (1.73 mL, 15 mmol, 3.0 equiv) was added, and the mixture was stirred at room temperature for additional 8 h. The mixture was cooled to 0 °C, before Ti(O*i*-Pr)₄ (1.49 mL, 5 mmol, 1.0 equiv) and then benzaldehyde (0.5 mL, 5 mmol, 1.0 equiv) were added. The mixture was stirred at room temperature for another 16 h. The reaction was quenched with sat. NH₄Cl and extracted with EtOAc. The organic layer was washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated. The crude mixture was purified on silica gel chromatography (0–40% EtOAc/hexanes) to give (*R*)-

¹⁹ Chen, W.; Tay, J.H.; Ying, J.; Yu, X.Q.; Pu, L. J. Org. Chem. 2013, 78, 2256.

8r (787mg, 84%) as a yellow oil. The enantiomeric excess was determined to be 94% by chiral HPLC analysis (CHIRALPAK IB, 1.0 mL/min, 3.0% *i*-PrOH/hexane, $\lambda = 210$ nm); t_R(major) = 12.39 min, t_R(minor) = 9.24 min. The spectral data of this compound matches of that reported in the literature.⁵

In a round-bottomed flask equipped with a condenser was placed LiAlH₄ (174 mg, 4.6 mmol, 1.5 equiv) and THF (5 mL). A solution of (*R*)-**8r** (577 mg, 3.06 mmol, 1.0 equiv, 94% ee) and THF (10.3 mL) was added at room temperature. Then the mixture was refluxed for 1.5 h. The mixture was cooled in an ice-water bath, before the reaction was carefully quenched with sat. NH₄Cl. The product was extracted with Et₂O. The organic layer was washed with sat. NaCl, dried (MgSO₄), filtered, and concentrated. The crude mixture was purified on silica gel chromatography (5–10% Et₂O/hexanes) to give (*S*)-**3r** (400 mg, 69%) as a colorless oil. The spectra data of (*S*)-**3r** matches that reported in the literature.²⁰ The enantiomeric excess was considered to be 94% based on the precursor (*R*)-**8r**.

²⁰ Lurain, A. E.; Carroll, P. J.; Walsh, P. J. J. Org. Chem. 2005, 70, 1262.

Lo

274.021 274.051 274.051

—83.434

b-mioforoldD 081.77-

54.800

14.968

J

f1 (ppm)

Lα

S54

QZ-6-226-2 QZ-6-226-2 C13CPD256 CDCl3 /opt/nmrdata qzhou 11

-83.435

b-moforoldO 081.77-

-22.336

24.803
24.872

-14.952

NWWWWWWWW

MINIMANANAN

ANNAUNALIYAN CIMICINALIYA CIMICINALIYA MANA

MMMMMMMMMMMMMMMMM

MMMMMM

UNIVIMUM.

ANNAVALANAVANAVANAVANA

140

150

160

S63

10

20

- 0.0

821.1 1.128 1.178

MUMMM

WWWWW

MM

f1 (ppm)

S69 Γö

b-mioforoldO 081.77

-24.890 24.890

-12^{.028}

					Γ
					10
∠24.8002					50
54.9381					30
36.2211		-		had had been been been	40
					- 20
					- 09
					20
-22.1600 CDCl3	-				- 08
					- 06
				i na	f1 (ppm)
					110
		-			120
1142.121 					130
×138.2666					140
	r r r				150
	Ire A				160
	Procedt		and the second		170
	(S)-				180
	via G				190
				580	Ĺ

8.0

S88

126.6558 131.1507 131.1507 131.1509 134.2168 134.2168

сӉ

4887.07—

7498.85-

-34.0111

~50.4866 ~54.0840 ~57.2852

J

10

20

30

- 4

50

- 09

- 2

J

сH₃

-Ĥ

(S)-1g

8102.1-

2876.1 2876.1 28762

S110 2

8591.811-

73.2527

2870.437 39.3736

-57.3454

Γö

30 -

20

J

10

7868.771-

ъ

ਸੁੰ

b-mroforoldD 0081.77-

4858.07

26.1195 26.3009 26.3009 32.8952

40.3417

-77.1600 CDCI3

9201.69—

-23.5884

2789.21-

J

10

S128 Γŏ

MMMM

QZ-7-006-1 C13CPD256 CDCl3 /opt/nmrdata qzhou 47

122.2087 123.4246 123.4246 123.4246 123.4760 122.9700 13529.691 13528.8948 13528.8948 140.0517

-08.4839

-23.3775

S130- 2

-10

~50.5268

7703.25 7703.5677

725.9378 -25.9508 ~26.1000

- 2

100 90 f1 (ppm)

Lα

Enantioenriched, (*R*)-**3a**, 96% ee (retention) $_{\text{mAU}}$

Enantioenriched, (S)-3a, 87% ee (inversion)

Enantioenriched, (S)-3b, 84% ee (retention)

216045

100.000

100.000

2435930

Enantioenriched, (*R*)-**3b**, 83% ee (inversion)

Total

Enantioenriched, (R)-3c, 88% ee (retention)

	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	13.108	113915	7009	94.209	94.665
	2	15.130	7002	395	5.791	5.335
Γ	Total		120917	7404	100.000	100.000

Enantioenriched, (S)-3c, 84% ee (inversion)

Enantioenriced, (R)-3d, 94% ee (retention)

Enantioenriced, (S)-3d, 89% ee (inversion)

Enantioenriced, (S)-3e, 86% ee (retention)

Enantioenriced, (*R*)-3e, 82% ee (inversion)

Enantioenriced, (S)-3f, 95% ee (retention)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.987	932391	42781	97.403	97.645
2	20.193	24861	1032	2.597	2.355
Total		957252	43813	100.000	100.000

Enantioenriced, (*R*)-3f, 90% ee (inversion)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.806	1374079	77208	49.958	58.847
2	23.937	1376411	53992	50.042	41.153
Total		2750490	131200	100.000	100.000

Enantioenriched, (S)-**3g**, 93% ee (retention) mAU

Peak#	Ret. Time	Area	Height	Area %	Height %			
1	16.057	649583	36423	96.403	97.228			
2	24.458	24239	1038	3.597	2.772			
Total		673822	37461	100.000	100.000			

Enantioenriched, (*R*)-**3**g, 84% ee (inversion) mAU

24.786

2

Total

11443

12947

300781

327658

88.386

100.000

91.797

100.000

Enantioenriced, (R)-3h, 90% ee (retention)

Enantioenriced, (S)-3h, 89% ee (inversion)

Enantioenriched, (S)-3i, 68% ee (retention)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.095	211809	8267	84.127	85.353
2	23.755	39964	1419	15.873	14.647
Total		251774	9686	100.000	100.000

Enantioenriched, (S)-**3**j, 92% ee (retention) _{mAU}

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.253	186677	4534	96.144	96.172
2	25.273	7487	180	3.856	3.828
Total		194163	4715	100.000	100.000

Enantioenriched, (*R*)-3j, 77% ee (inversion)

Enantioenriched, (S)-**3k**, 98% ee (retention) mAU

Enantioenriched, (*R*)-**3k**, 91% ee (inversion)

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.351	2006467	129008	49.967	59.598
2	22.157	2009095	87455	50.033	40.402
Total		4015562	216463	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.739	107690	6684	99.149	99.337
2	22.980	925	45	0.851	0.663
Total		108615	6728	100.000	100.000

Enantioenriched, (*R*)-31, 80% ee (inversion)

L)etect	tor A	Ch1 220nm
	D	1 11	D (TP)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.374	10081	817	10.473	17.007
2	22.643	86180	3985	89.527	82.993
Total		96262	4801	100.000	100.000

Enantioenriched (S)-3m, 96% ee (retention)

Enantioenriched (*R*)-**3m**, 92% ee (inversion)

Enantioenriched (S)-3n, 79% ee (retention)

Enantioenriched (*R*)-**3n**, 89% ee (inversion)

Enantioenriched, (*S*)-**30**, 76% ee (retention) mAU

Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.883	6364084	463297	88.310	89.871		
2	13.071	842476	52218	11.690	10.129		
Total		7206560	515515	100.000	100.000		

Enantioenriched, (*R*)-**30**, 70% ee (inversion) $_{MAU}$

Enantioenriched, (S)-8p, 92% ee (retention)

Detector							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.953	164549	8329	96.014	96.389		
2	17.280	6831	312	3.986	3.611		
Total		171381	8642	100.000	100.000		

Enantioenriched, (S)-3q, 81% ee (retention)

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.421	14121	651	9.377	11.620
2	20.539	136481	4953	90.623	88.380
Total		150602	5604	100.000	100.000

Enantioenriched, (*R*)-**3q**, 77% ee (inversion) $_{MAU}$

Dettector 11	CHI 25 mm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.626	590432	20989	88.552	86.952
2	20.767	76334	3150	11.448	13.048
Total		666766	24139	100.000	100.000

Enantioenriched, (R)-3 \mathbf{r} , 70% ee (inversion)

Detector A	Ch1	254nm
------------	-----	-------

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.018	1639195	118061	84.974	89.781
2	19.733	289866	13438	15.026	10.219
Total		1929061	131499	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.717	1392193	203778	49.938	52.175
2	5.294	1395650	186791	50.062	47.825
Total		2787843	390568	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.722	1414357	206984	96.025	96.420
2	5.304	58546	7686	3.975	3.580
Total		1472902	214669	100.000	100.000

1 Culti	reet. rinne	11100	ineight	nicu /c	incigine 70
1	7.662	545452	52377	50.258	56.929
2	8.744	539849	39627	49.742	43.071
Total		1085301	92004	100.000	100.000

Enantioenriched (*R*)-1c, 93% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.922	929334	100908	97.154	98.318
2	8.812	27225	1726	2.846	1.682
Total		956559	102634	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.546	1421132	192117	49.933	66.385
2	7.776	1424963	97280	50.067	33.615
Total		2846095	289397	100.000	100.000

Enantioenriched (S)-1f, 98% ee

Delector A	CIII 234IIII	
Dool/#	Dot Time	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.555	1321114	179619	99.127	99.463
2	7.792	11641	971	0.873	0.537
Total		1332754	180589	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.413	5415837	782608	49.859	50.324
2	4.939	5446528	772532	50.141	49.676
Total		10862365	1555140	100.000	100.000

Enantioenriched (*S*)-1g, 94% ee

Detector A	Ch1	1 254	nm
------------	-----	-------	----

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.300	83718	18747	2.715	2.745
2	4.614	2999625	664222	97.285	97.255
Total		3083343	682969	100.000	100.000

Enantioenriched (S)-1i, 70% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.816	321095	24793	84.870	85.840
2	9.201	57242	4090	15.130	14.160
Total		378336	28883	100.000	100.000

	Detector A	Ch1 254nm
Г		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.722	136201	13271	50.103	52.242
2	9.593	135642	12132	49.897	47.758
Total		271843	25403	100.000	100.000

Enantioenriched (*S*)-1j, 99% ee mAU

|--|

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.578	7142	571	0.072	0.066
2	9.286	9953521	863992	99.928	99.934
Total		9960662	864563	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.885	1677000	176994	50.017	56.641
2	7.488	1675869	135488	49.983	43.359
Total		3352870	312481	100.000	100.000

Enantioenriched (S)-1k, 99% ee

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.904	29135	3229	0.232	0.405
2	7.416	12554498	794821	99.768	99.595
Total		12583633	798050	100.000	100.000

Enantioenriched (S)-11, 99% ee

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.149	46047	8338	0.476	0.605
2	4.747	9626484	1369240	99.524	99.395
Total		9672531	1377578	100.000	100.000

Enantioenriched (*S*)-1m, >99% ee

Dettector II										
Peak#	Ret. Time	Area	Height	Area %	Height %					
1	6.342	3836651	446020	99.772	99.885					
2	10.752	8785	514	0.228	0.115					
Total		3845436	446534	100.000	100.000					

Enantioenriched (S)-1n, >99% ee

Peak#	Ret. Time Area		Height	Area %	Height %
1	6.560	13252275	1506598	99.935	99.911
2	7.178	8583	1338	0.065	0.089
Total		13260858	1507935	100.000	100.000

De	tect	tor	Δ	Ch1	254	lnm
$\mathcal{D}\mathcal{C}$	uu	1UI	\mathbf{n}	CIII		FI I I I I I

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.689	6758149	879153	50.260	54.796
2	6.553	6688188	725245	49.740	45.204
Total		13446337	1604397	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.705	549103	73043	10.717	12.824
2	6.508	4574751	496540	89.283	87.176
Total		5123854	569583	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.408	376692	20530	50.110	50.215
2	15.268	375033	20354	49.890	49.785
Total		751724	40884	100.000	100.000

Enantioenriched, (*S*)-**3p**, >99% ee

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.438	505358	27750	99.944	99.996
2	15.150	281	1	0.056	0.004
Total		505640	27751	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.201	292810	25239	50.298	55.461
2	12.425	289346	20268	49.702	44.539
Total		582156	45507	100.000	100.000

Enantioenriched, (R)-8 \mathbf{r} , 94% ee

Detector A Ch2 210nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.240	11371	942	2.909	3.367
2	12.390	379442	27046	97.091	96.633
Total		390813	27989	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	28.688	5275484	158371	49.824	51.253
2	30.100	5312766	150628	50.176	48.747
Total		10588250	309000	100.000	100.000

Enantioenriched (*R*)-9, 95% ee

Detector A	A Ch2	210nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	27.460	111513	3478	2.132	2.516
2	29.035	5118028	134752	97.868	97.484
Total		5229541	138229	100.000	100.000