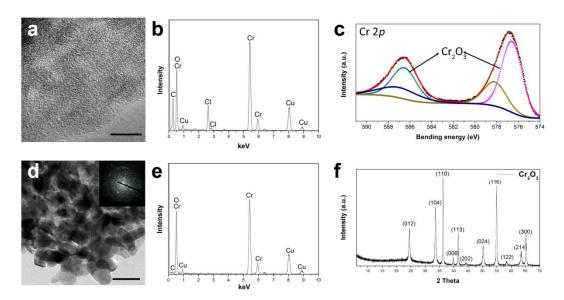
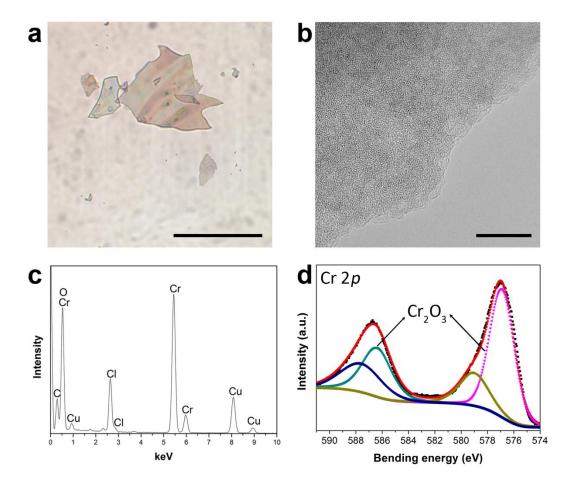
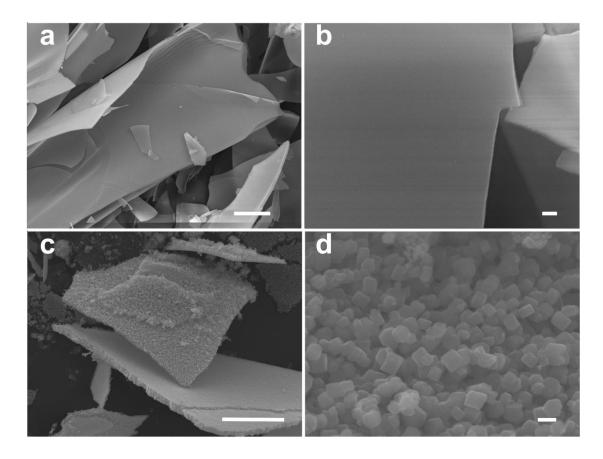

Supplementary Figure 1 | SEM of the vermiculite samples. Vermiculite (a) before and (b) after heat treatment. Scale bars, $100 \mu m$ (a) and $500 \mu m$ (b).


Supplementary Figure 2 | Thickness of Cr_2O_3 nanosheet measured by AFM. AFM image of the Cr_2O_3 obtained by alcohol lamp heating (a), (b) Height profile along the red line indicated in (a), which is consistent with a sheet thickness of 1.2 nm.

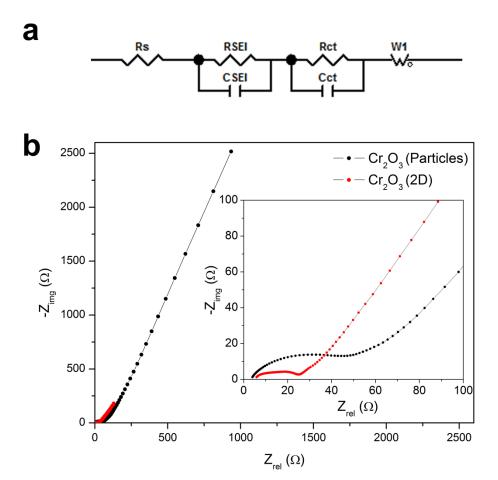

Supplementary Figure 3 | Characterization of $CrCl_3\cdot 6H_2O$ starting material. (a,b) SEM images and (c) XRD pattern of the $CrCl_3\cdot 6H_2O$ raw material. Scale bar, 10 μ m (a) and 2 μ m (b).

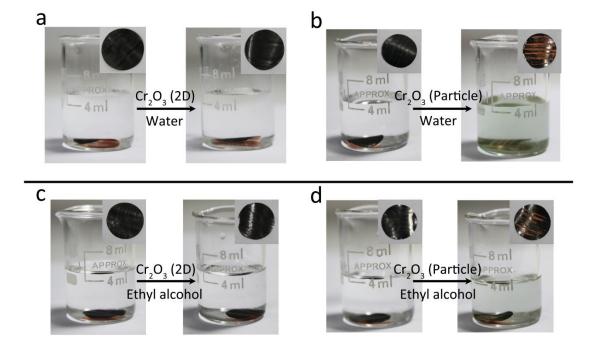
Supplementary Figure 4 | EDS of material produced by microwave heating. EDS analysis results suggested the sample is CrOCl (obtained by heating $CrCl_3 \cdot 6H_2O$ in a microwave oven).

Supplementary Figure 5 | **Characterization of** Cr_2O_3 . The Cr_2O_3 was obtained by heating $CrCl_3 \cdot 6H_2O$ using an alcohol lamp. (a) HRTEM image of the Cr_2O_3 nanosheets. (b) EDS result for the samples shown in (a). (c) XPS results of the Cr_2O_3 . (d) TEM image of a sheet formed by Cr_2O_3 crystal particles (Inset) Corresponding electron diffraction pattern. (e) EDS result for the Cr_2O_3 shown in (d). (f) XRD pattern of the Cr_2O_3 sample. Scale bar, 5 nm (a) and 100 nm (d).

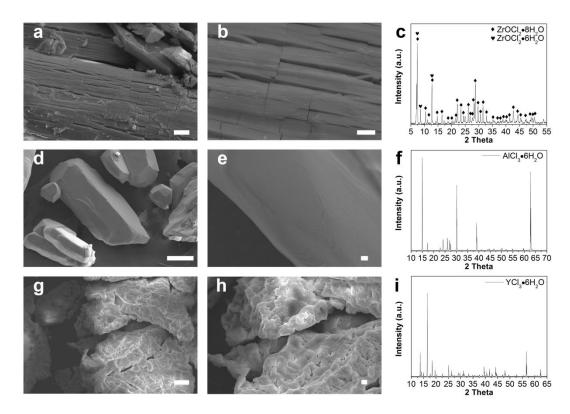


Supplementary Figure 6 | Characterization of Cr_2O_3 . The Cr_2O_3 was obtained by heating $CrCl_3 \cdot 6H_2O$ using the muffle furnace. (a) Optical microscopy image of Cr_2O_3 . (b) HRTEM image of Cr_2O_3 nanosheets. (c) EDS result for the Cr_2O_3 . (d) XPS result of the Cr_2O_3 . Scale bar, 50 µm (a) and 10 nm (b).

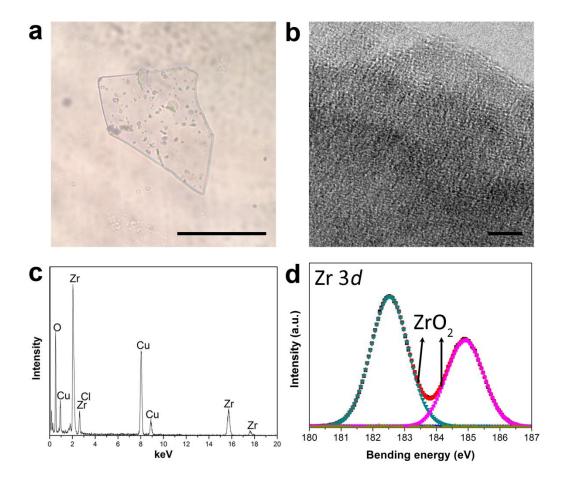



Supplementary Figure 7 | Large-scale production. (a) 1000 ml batch of 2D chrome oxide nanosheets. (Inset) SEM image of the chromium oxide nanosheets. Scale bar, $10 \ \mu m$. (b) The muffle furnace used in the experiments. The interior dimensions of the furnace are approximately $10 \times 10 \times 10 \ cm^3$.

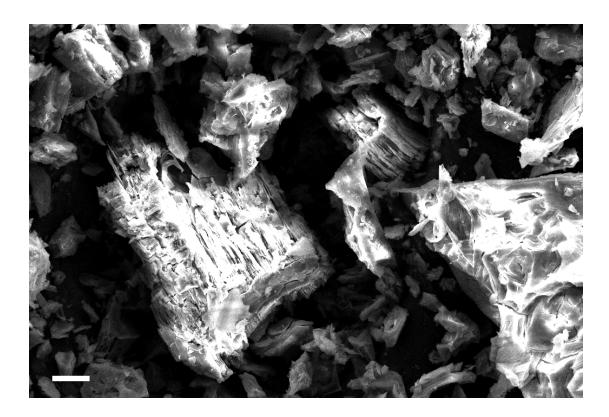
Supplementary Figure 8 | SEM images of Cr_2O_3 . (a,b) The Cr_2O_3 obtained by heating $CrCl_3 \cdot 6H_2O$ in a muffle furnace at 400 °C for 15 minutes without a temperature-ramping period. (c,d) The Cr_2O_3 obtained by heating $CrCl_3 \cdot 6H_2O$ in a muffle furnace at 400 °C for 15 minutes with a temperature ramp rate of 5 °C/min. Scale bar, 10 μ m (a,c) and 200 nm (b,d).

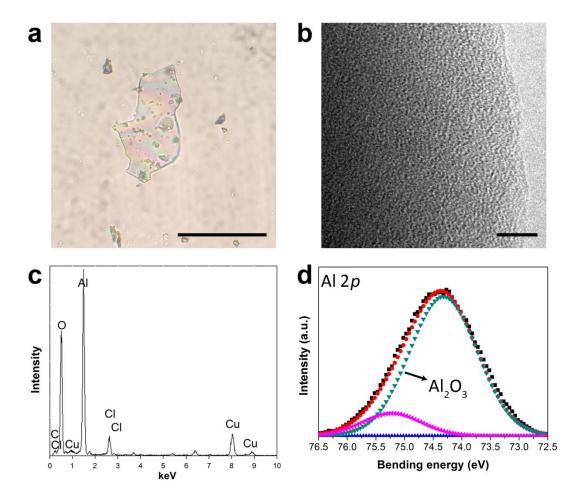


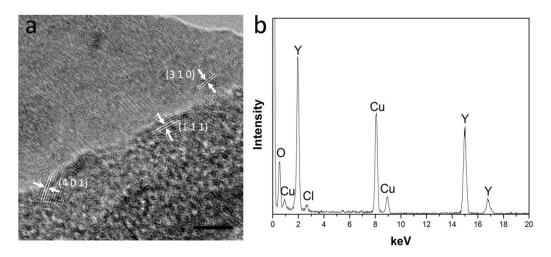
Supplementary Figure 9 | **The impedance of the electrodes.** (a) Equivalent circuit used for fitting the impedance spectra of the electrodes. (b) Nyquist plots of EIS spectra of the graphene/ Cr_2O_3 (2D) electrodes and graphene/ Cr_2O_3 (particle)/PVDF electrodes in delithiation stage.

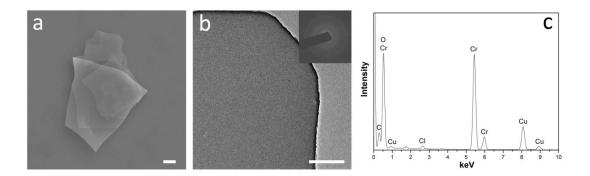


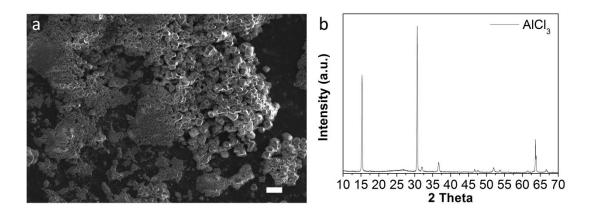
Supplementary Figure 10 | Adhesion performance of Cr₂O₃ (2D and particles).

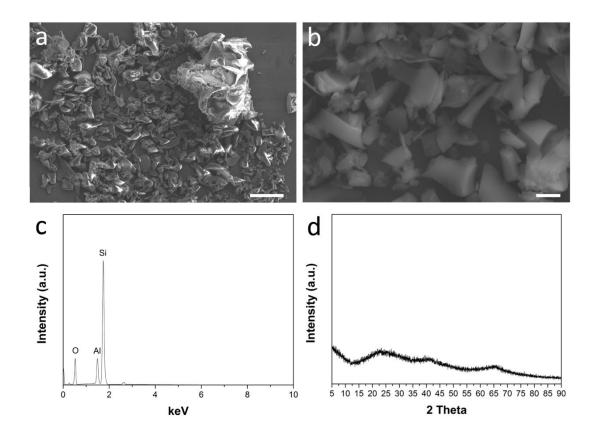

The 2D Cr₂O₃/graphene layers showed strong adhesion to the current collector (copper foil) as well as between layers. Panels (a) and (b) show the (a) Cr₂O₃ (2D)/graphene electrode and (b) Cr₂O₃ (particle)/graphene/PVDF electrode before (left of panel) and after (right of panel) they were ultrasonically cleaned in water for 5 minutes. Panels (c) and (d) show the Cr₂O₃ (2D)/graphene electrode and Cr₂O₃ (particle)/graphene/PVDF electrode before (left of panel) and after (right of panel) they were ultrasonically cleaned in ethyl alcohol for five minutes. The Cr₂O₃ (2D)/graphene electrode remained intact after being ultrasonically cleaned in water or ethyl alcohol. However, the Cr₂O₃ (particle)/graphene/PVDF electrode separated from the copper foil after ultrasonication.


Supplementary Figure 11 | Characterization of raw materials. (a,b) SEM images and (c) XRD pattern of the $ZrOCl_2 \cdot 8H_2O$ raw material including few $ZrOCl_2 \cdot 6H_2O$. (d,e) SEM images and (f) XRD pattern of the $AlCl_3 \cdot 6H_2O$ raw material. (g,h) SEM images and (i) XRD pattern of the $YCl_3 \cdot 6H_2O$ raw material. Scale bar 10 μ m (a,g), 2 μ m (b,e,h) and 100 μ m (d).


Supplementary Figure 12 | **Characterization of ZrO₂.** ZrO₂ was obtained by heating ZrOCl₂·8H₂O using a microwave oven. (a) Optical microscopy images of ZrO₂. (b) HRTEM image of ZrO₂ nanosheets. (c) EDS result for the ZrO₂. (d) XPS result of the ZrO₂. Scale bar, 50 μm (a) and 5 nm (b).


Supplementary Figure 13 | SEM image of the Al_2O_3 . Al_2O_3 obtained by heating the $AlCl_3 \cdot 6H_2O$ crystals in a glass bottle for approximately five minutes using an alcohol lamp. Scale bar, 20 μm .


Supplementary Figure 14 | Characterization of Al_2O_3 . Al_2O_3 was obtained by heating $AlCl_3 \cdot 6H_2O$ using a heating gun. (a) Optical microscopy images of Al_2O_3 . (b) HRTEM image of Al_2O_3 nanosheets. (c) EDS result for the Al_2O_3 . (d) XPS result of the Al_2O_3 . Scale bar, 50 µm (a) and 10 nm (b).


Supplementary Figure 15 | Characterization of Y_2O_3 . (a) HRTEM image of Y_2O_3 nanosheets. (b) EDS result for the Y_2O_3 . Scale bar, 5 nm (a).

Supplementary Figure 16 | **Characterization of the Cr₂O₃.** Cr₂O₃ was obtained using a rapid thermal oven. (a) SEM (b) TEM (the inset is corresponding electron diffraction pattern) and (c) EDS results. Scale bar, 2 μm (a) and 200 nm (b).

Supplementary Figure 17 | The products fabricated from anhydrous AlCl₃. (a) SEM image and (b) XRD pattern of the products fabricated from anhydrous AlCl₃ by rapid heating process (heated the anhydrous AlCl₃ using the alcohol lamp). Scale bar, 10 μm. During the heating process, the AlCl₃ was volatilized without chemical reaction. Accordingly, XRD unmodified anhydrous AlCl₃ after treatment. The obtained product was composed of micron-sized particles without 2D structure.

Supplementary Figure 18 | The products fabricated from AlNO₃·9H₂O_. (a,b) SEM images, (c) EDS result and (d) XRD pattern of the products fabricated from AlNO₃·9H₂O by rapid heating (heated for approximately five minutes using alcohol lamp). According to the XRD, EDS and SEM results, the obtained amorphous aluminum oxide was micron-sized particles without obvious 2D structure. Scale bar, $10 \mu m$ (a) and $2 \mu m$ (b).