Supplementary information

Oncogenic Mutations Affect Bax Monomer, Dimer, and Pore in

Membrane Differentially

Mingzhen Zhang¹, Jie Zheng¹, Ruth Nussinov^{2,3*} and Buyong Ma^{2*}

¹ Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio 44325

² Basic Science Program, Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA

³ Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Figure S1. Residue-based backbone RMSF profiles for wild-type, G40E and S118 monomers and dimers. WT denotes the wild type.

Figure S2. Dimerization of Bax α 9 during pore formation simulation. The Bax α 9 was initial inserted into membrane without contact, unlike the dimeric conformation in other Bax segments. However, the α 9 spontaneously dimerize, increasing overall stability of Bax pore. The plot reports the distances between the center of masses for the different Bax α 9 units.

Figure S3. Bax docecamer forms toroidal pore in membrane after 1.5 μ s simulation. (A) Distribution of lipid head group perpendicular to the membrane. (B) and (C) Top and side view of lipid head groups of membrane portion of the pore.

	Emonomer (kcal/mol)	Edimer (kcal/mol)	ΔE (kcal/mol)
Wild Type	-6233.72	-12425.60	41.84
G40E	-6209.00	-12454.00	-36.00
S118I	-6165.67	-12464.40	-133.06

Table S1. GMBV energies for the simulated systems.