Supplementary Material

Anion channelrhodopsins for inhibitory cardiac optogenetics

Elena G. Govorunova¹, Shane R. Cunha², Oleg A. Sineshchekov¹ & John L. Spudich^{1*}

¹Center for Membrane Biology, Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston – McGovern Medical School, Houston, Texas, USA;
²Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston – McGovern Medical School, Houston, Texas, USA.

*Correspondence should be addressed to J.L.S. (John.L.Spudich@uth.tmc.edu).

Supplementary Figure S1. The dependence of the reversal potential, E_{rev} (left axis) and the mean peak photocurrent at 0 mV (right axis) generated by *Gt*ACR1 in NRVMs on the Cl⁻ concentration in the pipette. The data points are the mean values ± sem (n = 3-4 cells for E_{rev} and 6-8 cells for peak currents).

Supplementary Figure S2. The influence of light on the AP shape in NRVMs expressing

GtACRs. (a) Inhibition of an AP by switching on the light during the depolarization phase in a *Gt*ACR1-expressing cell. Light (schematically shown as the green bar): 510 nm, 230 μ W mm⁻². (b) Shortening of the AP duration by switching on the light during the repolarization phase in a *Gt*ACR2-expressing cell. Light (schematically shown as the blue bar): 470 nm, 250 μ W mm⁻². In both panels the red lines show current traces recorded upon illumination, the black lines, traces recorded from the same cell in the dark.