# Supplemental Materials Molecular Biology of the Cell

Rao et al.

### SUPPLEMENTARY FIGURE LEGENDS





(A) Three examples each of isolated Eph4 cells in control and SMIFH2-treated conditions, labeled to visualize F-actin. (B) Quantification of cell area in isolated cells or confluent monolayers post-SMIFH2 treatment. Note that SMIFH2 treatment on isolated cells does not induce excess cell spreading. n=30 isolated cells or 100 cells in a monolayer. (C) Double inhibition of formin and Arp2/3 complex activities (SMIFH2+CK666, bottom panel) abrogates cell spreading induced by SMIFH2 (middle panel). Note the reduction in junctional E-cadherin with combined SMIFH2 and CK666 treatment (DAPI labeling shown for reference). Statistical significance assessed using Student's t-test in (B). Scale bars,  $10\mu$ m (A);  $20\mu$ m (C).



(A) Expression profile of Diaphanous-related family of formins in Eph4 cells. Error bars represent s.e.m., n=2 independent experiments. (B) Quantification of KD efficiency for Diaphanous-related family of formins. Error bars represent s.e.m., n=2-3 independent experiments. (C) Representative images of AJ morphology visualized by labeling E-cadherin after KD of individual formins as indicated. (D) & (E)

Representative gel images showing KD efficiency for formins *Diap1* and *Fmnl3* in Eph4, respectively. *Gapdh* was used as a control. C: Non-targeting control siRNA, KD: Knockdown. Scale bar,  $20\mu m$  (C).



(A) Phenotypes obtained upon siRNA-mediated KD of DIAP1 or FMNL3 in MCF10A monolayers, labeled to visualize E-cadherin; note the reduction in lateral junctions and increased cell area associated with DIAP1 or FMNL3 KD. (B) Endogenous DIA1 exhibits diffuse localization in MCF10A cells (left panel), while endogenous FMNL3 localizes at the AJ (right panel), co-localizing with E-cadherin. (C) Montage from a movie of an *in vitro* scratch assay in control (Neg siRNA) or FMNL3KDconditions in MCF10A monolayers. Images are pseudo-colored in yellow to indicate cohesive regions of the cell sheet, and in blue (bottom panel) to highlight cells that have detached from the migrating front. Related to Supplementary Movie 5 and 6. (D) Quantification of wound closure. n=12 movies for each condition, with mean±s.e.m. (E) Quantification of cells detaching from migrating front (%). n=12 movies for each condition, with mean±s.d. (F) Dispase assayto determine adhesion strength in MCF10A for conditions tested in (C). EGTA treatment served as a low adhesion strength control. Individual dots represent a single experiment (n=3), with mean±s.d. (G) & (H) Representative gel images showing KD efficiency for formins DIAP1 and FMNL3 in MCF10A, respectively. GAPDH was used as a control. C: Non-targeting siRNA control, KD: Knockdown. Statistical significance assessed using Student's t-test in (E); one-way ANOVA in (F). Scale bars, 20µm (A and B); 50µm (C).



(A) Quantification of KD efficiency for Src kinase. Error bar represents s.e.m., n=3 independent experiments. Representative gel image showing KD of *Src* is provided. *Gapdh* was used as a control. C: Non-targeting siRNA control, KD: Knockdown. (B) Expression of constitutively active RhoA-V14 or Rac1-L61 does not rescue Src inhibition phenotype (transfected cells marked with yellow asterisks). (C)

Quantification of E-cadherin intensity at the AJ for (**B**). Control cells were transfected with EGFP. n=25-30 cells from 3 experiments. Statistical significance assessed using one-way ANOVA in (**C**). Scale bar,  $20\mu m$  (**B**).



**Supplementary Figure 5** 

(A) Immuno-labeling for endogenous FmnI3 during the process of wound closure over 14hr. Cells depicted here were located 4-5 cells rows behind the wound edge. Note the increased localization of FmnI3 at the AJ between 6hr-10hr time points. (B) Quantification of FmnI3 fluorescence intensity for (A). Error bars represent s.e.m., n=2 independent experiments. (C) Representative images of Eph4 monolayers labeled to visualize  $\alpha$ -catenin  $\alpha$ 18,  $\alpha$ -catenin and F-actin following treatment with nocodazole or blebbistatin.  $\alpha$ 18/ $\alpha$ -catenin ratio images illustrate the increase or decrease in force-dependent stretching of  $\alpha$ -catenin at cell-cell junctions. (D) Quantification of  $\alpha$ 18/ $\alpha$ -catenin intensity ratio for (C). n>50 junctions for each condition tested, with mean±s.e.m. (E) Uncropped gel image, related to Figure 6F. Statistical significance assessed using Student's t-test in (D). Scale bars, 20µm (A and C).

#### Supplementary Table 1

| S.No | Gene<br>Symbol | Species | Gene ID | Gene Accession | Sequence             |
|------|----------------|---------|---------|----------------|----------------------|
| 1.   | Diap1          | Mouse   | 13367   | NM_007858      | AGGUCGGGCUUGCGGGAUA  |
|      |                |         |         |                | GGGAGAUGGUGUCGCAAUA  |
|      |                |         |         |                | UCACACUGCUGGUCGGAAA  |
|      |                |         |         |                | UGGAUGAGGUCGAACGCUU  |
| 2.   | Diap3          | Mouse   | 56419   | NM_019670      | CAUAAAUGCUCUCGUUACA  |
|      |                |         |         |                | GUGCAUUGUCGGCGAGGAA  |
|      |                |         |         |                | CAGGAUAGCGAAAGAGCGA  |
|      |                |         |         |                | GUGGAAGGCCUCCGGCAUA  |
| 3.   | Diap2          | Mouse   | 54004   | NM_017398      | CCGCAUGCCAUACGAGGAA  |
|      |                |         |         |                | GAUGAGAAAUACCGGGAUA  |
|      |                |         |         |                | GCAAUAUGUUGAAGCUCUA  |
|      |                |         |         |                | CCUAGAUGCUUGUGUAAAU  |
| 4.   | Daam1          | Mouse   | 208846  | NM_172464      | AGCGAAGAGUUGCGGGAUA  |
|      |                |         |         |                | CAGGAGAGGUGUUCGACAA  |
|      |                |         |         |                | GAUGAAAUCAAGCGGGCAA  |
|      |                |         |         |                | GCCCAAAGUAGAAGCGAUU  |
| 5.   | Fhod1          | Mouse   | 234686  | NM_177699      | CUACAUACCGUGAGCGCAA  |
|      |                |         |         |                | GUAUCGGACUUGUCGGGAA  |
|      |                |         |         |                | UCGCAUGAUUACCGAGACA  |
|      |                |         |         |                | UGAGAGUGCCCUUCGGUUA  |
| 6.   | Fhod3          | Mouse   | 225288  | NM_175276      | GGAACAAAUUCAACCGGGA  |
|      |                |         |         |                | GCAGAGGAUAGAACGGGAA  |
|      |                |         |         |                | GAGCCGAGGCGGAUCAGAA  |
|      |                |         |         |                | CGGCAAGAGAGAGAGAGAAA |
| 7.   | Fmnl1          | Mouse   | 57778   | NM_019679      | GGGUUUAGGAGGCGAGUUC  |
|      |                |         |         |                | UUACACAGGUGCUGCGGGA  |
|      |                |         |         |                | AGAGAGAGUUUGUGCGGCA  |
|      |                |         |         |                | CCUACAAGAAAGCGGAACA  |
| 8.   | Fmnl2          | Mouse   | 71409   | NM_172409.2    | UGUUAAUGGUGCCGAAAUA  |
|      |                |         |         |                | GGACUUAAAUGUGGACGAA  |
|      |                |         |         |                | CAAAGUCGACAGACCGAAA  |
|      |                |         |         |                | GCGGAGAAAAGCAGCGUUU  |
| 9.   | Fmnl3          | Mouse   | 22379   | NM 011711      | GUAAAGAACUGCAUCGGUU  |

#### ON-TARGET plus siRNA oligonucleotides used for gene knockdown

|     |           |        |       |              | ACAACAGCGUCCUUCGAAA |
|-----|-----------|--------|-------|--------------|---------------------|
|     |           |        |       |              | AGUAUGAGCGUGAACGACA |
|     |           |        |       |              | CCACUAAAGUCCUACGGGA |
| 10. | Src       | Mouse  | 20779 | NM_001025395 | GCACGGGACAGACCGGUUA |
|     |           |        |       |              | GGGAGCGGCUGCAGAUUGU |
|     |           |        |       |              | UCAGAUCGCUUCAGGCAUG |
|     |           |        |       |              | GCUCGUGGCUUACUACUCC |
| 11. | DIAP1     | Human  | 1729  | NM_005219.4  | GAAGUGAACUGAUGCGUUU |
|     |           |        |       |              | GAAGUUGUCUGUUGAAGAA |
|     |           |        |       |              | GAUAUGAGAGUGCAACUAA |
|     |           |        |       |              | GCGAGCAAGUGGAGAAUAU |
| 12. | FMNL3     | Human  | 91010 | NM_175736.4  | AAGAACAGCUGGAGCGAUA |
|     |           |        |       |              | CCUCAUUACUUACGAGAGA |
|     |           |        |       |              | AGGUAAAGCUGCUGCGGCA |
|     |           |        |       |              | GCAUGGUGGUCUUGGCUAU |
| 13. | Neg siRNA | Mouse/ | -     | -            | UGGUUUACAUGUCGACUAA |
|     |           | Human  |       |              | UGGUUUACAUGUUGUGUGA |
|     |           |        |       |              | UGGUUUACAUGUUUUCUGA |
|     |           |        |       |              | UGGUUUACAUGUUUUCCUA |

# Supplementary Table 2

## Gene-specific primers for semi-quantitative PCR analysis

| S.N | Gene  | Species | Forward Primer (5'-3')  | Reverse Primer (5'-3')  |
|-----|-------|---------|-------------------------|-------------------------|
| 0   |       |         |                         |                         |
| 1.  | Diap1 | Mouse   | GGCCTAAATGGTCAAGGAGATAG | CAGAGGTGACAGCAGTGAAA    |
| 2.  | Diap3 | Mouse   | GTGGACGATTTGGCACATTTAG  | CTCTTTCTCTGCTCGCTCTTT   |
| 3.  | Diap2 | Mouse   | CGCCATCTGAAGACAGGATAAT  | CCGATAGGAGGAAGTGAAGAAAG |
| 4.  | Daam1 | Mouse   | CAGGCAGAGAAGATGAGGAAAG  | GAACTCCTGCTGTCTTTGGTAG  |
| 5.  | Fhod1 | Mouse   | TCTCCCTTCCTGTCATCTCTATC | CCTTGGCTCTGGACTCAAATAG  |
| 6.  | Fhod3 | Mouse   | GTTCCTTCTCACACTCTCTTCC  | GCGTCTCTCCATCTGACATAAA  |
| 7.  | Fmnl1 | Mouse   | CAGCCTATGGTTTCCGACTT    | GGGATGTGGTCTTGGGATTT    |
| 8.  | Fmnl2 | Mouse   | CCGTGTTCTTCCCTGTCTTT    | CTCGTCTGTAGGGTTGGTTTC   |
| 9.  | Fmnl3 | Mouse   | AAATACCCGGAACTGGCTAAC   | CGCATTACCTCCTCTTGTTTCT  |
| 10. | Src   | Mouse   | CTCGTGGCTTACTACTCCAAAC  | CATAGTTCATCCGCTCCACATAG |
| 11. | Gapdh | Mouse   | AACAGCAACTCCCACTCTTC    | TGGGTGCAGCGAACTTTAT     |
| 12. | DIAP1 | Human   | CTCTCCTGGCTGTGGTTATTT   | CACCTCCCATTTCCTTGTAGAC  |
| 13. | FMNL3 | Human   | CAAGAAGCAGGAGGAGGTAATG  | CTACAGACCTAGTGCCCATAGT  |
| 14. | GAPDH | Human   | GGTCGGAGTCAACGGATTT     | TCTTGAGGCTGTTGTCATACTT  |