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Supplementary methods 

 

Description of the gene expression data 

IlluminaHiSeq or IlluminaGa RNA-seq v2 data are the two main types of RNA-seq data. 

There exists serious batch effects between these two types of data, as showed in the 19 

COAD samples sequenced on both IlluminaHiSeq and IlluminaGa (data not shown). 

Moreover, the IlluminaHiseq data can solely meet out requirement. Thus, we don’t use the 

lluminaGA data to reduce the batch effects.  

 

Another concern is about the limited number of normal samples for some cancer types. 

Insufficient normal samples will greatly influence the statistic power in differential 

expression analysis. Although organ-specific control samples and tumor-matched normal 

samples have some differences, we treat them equally to add the number of normal 

samples. Finally, we choose those cohort with at least five normal samples for further 

analysis. 

 

We note two tips about the gene expression data. First, some patients have more than 

one normal sample. We select one of them as the represented one when doing correlation 

analysis (mutation, SCNA, DNA methylation) and survival analysis. Second, we use 

IlluminaGA data of COAD, READ and UCEC to correlate mutation status with gene 

expression. These two things have no effects on the differential gene expression analysis 

and network construction. 

 

Pan-cancer network construction and partition  

We first construct a DEG co-expression network for each cancer using the UQ normalized 

expression data of tumor samples. The weights of links are absolute Pearson’s correlation 

coefficients (PCC) between genes. After doing Bonferroni correction, we only keep the 

significant correlations as links (corrected p-value≤0.001). In addition, we treat the positive 

and negative links separately due to the nature of our data. We keep the top 0.5% positive 

and 0.5% negative links to cut many ‘non-cancer specific’ high corrections. We delete 

nodes without any connection to others. Finally, we get 16 differentially DEG 

co-expression networks. 

 

The next step is to extract the shared or common part of these 16 networks. Many links 

appear in n networks (n=1, 2, 3…14, 15, 16). Links appearing in no less than 3 cancer 

networks are considered as significant ones. Then, an important thing is to check the 

signs of those significant links since positive and negative correlations represent different 

biological meanings. We find that all significant links show the same sign in all different 

networks. We merge these links as well as linked genes to construct a shared 

co-expression network. We consider its largest connected component as the pan-cancer 

network for further analysis. 

 

We further adopt a classical spectral decomposition method [1] to extract the modular 

subnetworks. After deleting a few exceptional genes due to spectral decomposition, we 



obtain six pan-cancer subnetworks (Supplementary Figure S1). 

 

Stability of pan-cancer subnetworks 

There are two parameters to construct the pan-cancer network: the top x% links are kept 

in DEG co-expression network and the links occurring in more than n networks are kept. 

We determine n first. The main purpose is to study whether these highly frequent 

occurrence of these links are real or just by chance. Within each network, we shuffle the 

positions of the nodes to maintain the topological structure of the network and count the 

number of links occurring in n networks (n= 2, 3…14, 15, 16). We repeat this procedure 

100 times. The false discovery rate is defined as mean count of random networks divided 

by the count of real networks (Supplementary Figure S9). We note that n=1 is a special 

case. When n=1, it is equivalent to combine all DEG co-expression networks. We finally 

choose n=3 (FDR=0.0034). 

 

As to the top x% links kept in differentially expressed gene network, it is not easy and may 

has a strong effect on the final result. We test other 4 distinct values (0.1%, 1%, 1.5%, 2%) 

to compare their results with that of 0.5%. Parameters n are 2, 3, 4, 4 to maintain both the 

FDR (5.1%, 0.64%, 0.95%, 0.059%) and size of the shared network. We also use the 

optimal modularity and delete the scattered genes. The results show extremely strong 

similarities (Supplementary Figure S10). This implies that the majority of the shared 

network is very stable and the x%=0.5% is reasonable. 

 

Integration of known networks based on geneMania 

We conduct this analysis for each cancer type separately. The inputs are gene lists. Given 

a cancer type, we first choose genes which are differentially expressed compared to 

normal controls. Then we consider the number a gene differentially expressed to other 

cancer types as a measurement of specificity for this gene-cancer pair. We use this 

parameter (denote as S, S=1, 2, 3, …, 13, 14, 15) to select genes. We use the web toll 

geneMania [2] with known pathway interactions and physical interactions to construct the 

cancer type-specific networks. The number of genes to be predicted from our gene list 

(denoted as N) is another parameter. The output is the largest connected component of 

the resulted networks. We first fix N=5 and set S for each cancer type as 8 (BLCA), 9 

(BRCA), 9 (CHOL), 9 (COAD), 14 (GBM), 9 (HNSC), 14 (KICH), 12 (KIRC), 9 (KIRP), 15 

(LIHC), 9 (LUAD), 10 (LUSC), 9 (PRAD), 9 (READ), 10 (THCA), 9 (UCEC). 

 

Stability of the cancer type-specific modules 

We test different S (ranging from 8 to 15) and N (equals to 2, 5, 10, 15). We only take the 

largest connected component whose sizes are larger than 20 for further analysis. The size 

of output is quite straightforward (Supplementary Figure S11). It depends heavily on S 

rather than N. But when N and S become big at the same time, the proportion of the 

predicted genes in output is large (Supplementary Figure S12). Finally, N is set to be 5. 

 

When S is big, the size of some resulted modules are small (usually less than 20 genes) 

and it is not robust for the downstream analysis (e.g., functional gene enrichment analysis 



or principle component analysis). We ask for the size of the resulted modules to be larger 

than 80 genes for robustness and increase S as much as possible for each cancer type.  

 

Supplementary tables 

 

Table S1. The TCGA specimens used in this study. This table is provided as an Excel file. 

 

Table S2. The node genes of the pan-cancer and cancer type-specific subnetworks in this 

study. Official gene symbols and corresponding Entrez ID are shown in two columns, 

respectively. This table is provided as an Excel file. 

 

Table S3. The associations of pan-cancer subnetworks and clinical information. For each 

cancer and each subnetwork, the ME scores are calculated. FDR values for 

Kruskal-Wallis test are corrected by Benjamini and Hochberg correction [3]. FDR less than 

0.05 are in bold. This table is provided as an Excel file. 

 

Table S4. The associations of gender and clinical information in KIRP. P-values are 

calculated by Chi-squared tests. This table is provided as an Excel file. 

 

 

  



Supplementary figures 

 

 

Figure S1. Topological organization of the pan-cancer networks and its six modular 

subnetworks indicated in different colours. Black nodes are scattered genes due to 

spectral decomposition. 
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Figure S2. (A) Genes in subnetwork M3 are regulated by many motifs. Each row 

represents a gene and each column represents a motif. The motif specific transcriptional 

factors are marked along the columns. If a motif is enriched in the promoter region of a 

gene, the pix is filling in steelblue. Only significant motifs determined by gProfiler are 

shown [4]. (B) Gene expression and DNA methylation patterns of subnetwork M3. Left: 

gene expression pattern. Red (1) and green (-1) mean differentially higher and lower 

expressed compared to normal samples respectively. White (0) means that the gene is 

not differentially expressed in the cancer. Rows and columns are ordered according to 

hierarchical clustering (Euclidean distance and average linkage). Right: DNA methylation 

pattern. Red and green mean higher or lower DNA methylation level compared to the 

mean of normal samples. Genes and cancers are arranged in the same order as in the left 

panel. Only the DNA methylation level of differentially expressed genes are shown. 
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Figure S3. Gene expression patterns of the pan-cancer subnetworks/modules. Rows 

represents module genes and columns represent cancer types. Red (1) and blue (-1) 

mean higher and lower differential expression compared to normal samples, respectively. 

Grey (0) means that the gene is not differentially expressed in the cancer. Cancer types 

are ordered according to hierarchical clustering (Euclidean distance and complete 

linkage).  



 

Figure S4. The contributions of each cancer type to the construction of the pan-cancer 

network. Columns represent the subnetworks M1 to M6 and the whole pan-cancer 

network (all). Each row correspond to a cancer type. The grey levels are proportioned to 

the fraction of edges coming from each cancer type in a given network.  

 



 

 

Figure S5. Intersections between cancer type-specific subnetworks. Each row and each 

column represents a cancer type-specific subnetwork. Colors are proportioned to the 

Jaccard similarity coefficient of two subnetworks. Numbers of common genes are shown.  

Rows and columns are ordered according to hierarchical clustering with Euclidean 

distance and average linkage.  

 



 

Figure S6. (A) Distribution of ME scores of the BRCA subnetwork in terms of ER, PR and 

HER2 status. (B) Distribution of ME scores of the BRCA subnetwork in terms of TP53 

mutation status. (C) TFF1 gene expression distributions (TMM normalized data) in terms 

of PAM50 subtypes. For box plots, the bottom, top, and middle bands of the boxes 

indicate the 25th, 75th, and 50th percentiles, respectively. Whiskers extend to the most 

extreme data points no more than 1.5 interquartile ranging from the box. FDR values (or p 

value) for the Kruskal-Wallis test are provided at the top of the boxplots. 
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Figure S7. Correlation between the KIRP subnetwork and SCNAs. Scatter plot of CLDN3, 

FZD1, ITGB8, MET, PLCD3, TFPI2 SCNA and ME scores. The regression line is 

calculated by least squares and shown in the panel. Pearson’s correlation coefficients are 

shown at the bottom of each panel. 
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Figure S8. (A) The association between histological diagnosis and RAF-RAS mutation 

status. Different colors indicate diverse histological diagnosis. Rows are the mutation 

status of BRAF, HRAS and NRAS genes. Columns are the proportion of patients of 

different histological subtypes. (B) ME scores of the BLCA subnetwork in terms of FGFR3 

mutation status, histologic subtype, pathologic stage, T stage and tumor grade. For box 

plots, the bottom, top, and middle bands of the boxes indicate the 25th, 75th, and 50th 

percentiles, respectively. Whiskers extend to the most extreme data points no more than 

1.5 interquartile ranging from the box. FDR values (or p value) for the Kruskal-Wallis test 

are provided at the top of the boxplots. 
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Figure S9. Comparison between the normalization factor of trimmed mean of M-value 

(TMM) and upper quartile (UQ) normalization methods. X-axis is the normalization factor 

calculated by TMM, Y-axis is that of UQ.  
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Figure S10. Comparison between TMM and UQ for differentially expression analysis. 

After normalization, highly expressed genes (more than 50% of samples have CPM≥10) 

are counted. Under different normalization methods, number of differentially expressed 

genes (fold change≥2 and FDR≤0.001) are also counted. 



 

Figure S11. False discovery rate of high-frequency appearances of edges. Given a 

parameter n (n=2,3,…,14,15,16), FDR values are defined as mean of edges which shows 

up in n pseudo networks divided by that of real networks. There doesn’t exist any edge 

which appears in more than 10 pseudo or real networks. 

 



 

Figure S12. Stability of the pan-cancer subnetworks. Rows correspond to pan-cancer 

subnetworks (0.5% links and cutoff 3). Columns are subnetworks calculated under other 

different parameters (0.1%, 1%, 1.5%, 2% links and 2, 3, 4, 4 cutoffs, respectively). Colors 

are proportioned to Jaccard similarity coefficient of two subnetworks. Numbers of common 

genes are shown. 



 

Figure S13. Sizes of cancer type-specific subnetworks under different N and S. Different 

colors indicate different N. 



 

Figure S14. Proportion of the resulted genes in cancer type-specific subnetworks under 

different N and S. ‘Query genes' are our input genes and ‘resulted genes’ are those 

predicted by geneMania. Different colors indicate different N. 
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