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I. EMPIRICAL DATA

In order to study the evolution of the World Trade Web (WTW), we have constructed a network for every year
in which nodes are countries and the links between them carry a weight ωij which is equal to the sum of the trade
flows from i to j and from j to i, i. e. ωij = ωi→j + ωj→i. Hence, the resulting networks are positively weighted and
undirected. We now describe how we obtained the bilateral trade data needed to generate the networks.

The Correlates of War Project (COW) (Refs. [26, 27] in the paper) provides a database with the bilateral trade
flows from 1870 to 2009, as well as a detailed document with the procedure followed to obtain the data. We have used
this data from 1870 to 1996 (we have removed the flows between Haiti and United Kingdom in 1877, which seem to
be an outliar). However, since we detected some flaws in the dataset for the last years—like the absence of trade data
for Germany after 2006—and we wanted to complement the dataset with recent data, we followed the same steps to
reconstruct the bilateral trade data from 1997 to 2013. The first step in this process is to download the trade data
from the International Monetary Fund (IMF) [1]. This database includes the trade data as reported by each country.
Thus, a given country may appear under different names—for instance, some countries still report trade with the
U.S.S.R. To solve this, we first need to match the different countries appearing in the dataset with the COW’s state
list, which we have extended from 2011 to 2013 (COW’s country codes are collected in Table S1). In most cases,
the matching is very clear, but there are some special cases: China’s trade data does not include that of the two
special administrative regions Hong Kong and Macao. We have added those flows to China. Also, there are many
entries that correspond to “Yugoslavia” in the COW’s state list (“Yugoslavia”, “Yugoslavia not specified”, “Serbia
and Montenegro”, “Serbia and Montenegro not specified”, “Serbia, Republic of”, “Montenegro” and “Kosovo” before
its independence). The flows to or from “U.S.S.R. not specified” have been redirected to “Russia” and the trade of
“South Sudan” in 2011 to “Sudan”. Also, several countries report trade with “Belgium-Luxembourg not specified”;
following the same steps as the COW Project, we have split every such flow into two, proportionally to the GDP of
Belgium and Luxembourg the corresponding year. The GDP data of both countries for this operation was retrieved
from the World Bank [2]. Finally, there are no trade reports from Taiwan in the IMF database. We have obtained
its data from the ROC’s Bureau of Foreign Trade [3]. Again, we have matched their country list with the one from
the COW Project.
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Num. code 3 letter code Name

2 USA United States of America

20 CAN Canada

31 BHM Bahamas

40 CUB Cuba

41 HAI Haiti

42 DOM Dominican Republic

51 JAM Jamaica

52 TRI Trinidad and Tobago

53 BAR Barbados

54 DMA Dominica

55 GRN Grenada

56 SLU St. Lucia

57 SVG St. Vincent and the Grenadines

58 AAB Antigua & Barbuda

60 SKN St. Kitts and Nevis

70 MEX Mexico

80 BLZ Belize

90 GUA Guatemala

91 HON Honduras

92 SAL El Salvador

93 NIC Nicaragua

94 COS Costa Rica

95 PAN Panama

100 COL Colombia

101 VEN Venezuela

110 GUY Guyana

115 SUR Suriname

130 ECU Ecuador

135 PER Peru

140 BRA Brazil

145 BOL Bolivia

150 PAR Paraguay

155 CHL Chile

160 ARG Argentina

165 URU Uruguay

200 UKG United Kingdom

205 IRE Ireland

210 NTH Netherlands

211 BEL Belgium

212 LUX Luxembourg

220 FRN France

221 MNC Monaco

223 LIE Liechtenstein

225 SWZ Switzerland

230 SPN Spain

232 AND Andorra

235 POR Portugal

240 HAN Hanover

245 BAV Bavaria

255 GMY Germany

260 GFR German Federal Republic

265 GDR German Democratic Republic

267 BAD Baden

269 SAX Saxony

271 WRT Wuerttemburg

273 HSE Hesse Electoral

275 HSG Hesse Grand Ducal

280 MEC Mecklenburg Schwerin

290 POL Poland

300 AUH Austria-Hungary

305 AUS Austria

310 HUN Hungary

315 CZE Czechoslovakia

316 CZR Czech Republic

317 SLO Slovakia

325 ITA Italy

327 PAP Papal States

329 SIC Two Sicilies

331 SNM San Marino

332 MOD Modena

335 PMA Parma

337 TUS Tuscany

Num. code 3 letter code Name

338 MLT Malta

339 ALB Albania

341 MNG Montenegro

343 MAC Macedonia

344 CRO Croatia

345 YUG Yugoslavia

346 BOS Bosnia and Herzegovina

347 KOS Kosovo

349 SLV Slovenia

350 GRC Greece

352 CYP Cyprus

355 BUL Bulgaria

359 MLD Moldova

360 ROM Romania

365 RUS Russia

366 EST Estonia

367 LAT Latvia

368 LIT Lithuania

369 UKR Ukraine

370 BLR Belarus

371 ARM Armenia

372 GRG Georgia

373 AZE Azerbaijan

375 FIN Finland

380 SWD Sweden

385 NOR Norway

390 DEN Denmark

395 ICE Iceland

402 CAP Cape Verde

403 STP Sao Tome and Principe

404 GNB Guinea-Bissau

411 EQG Equatorial Guinea

420 GAM Gambia

432 MLI Mali

433 SEN Senegal

434 BEN Benin

435 MAA Mauritania

436 NIR Niger

437 CDI Ivory Coast

438 GUI Guinea

439 BFO Burkina Faso

450 LBR Liberia

451 SIE Sierra Leone

452 GHA Ghana

461 TOG Togo

471 CAO Cameroon

475 NIG Nigeria

481 GAB Gabon

482 CEN Central African Republic

483 CHA Chad

484 CON Congo

490 DRC Democratic Republic of the Congo

500 UGA Uganda

501 KEN Kenya

510 TAZ Tanzania

511 ZAN Zanzibar

516 BUI Burundi

517 RWA Rwanda

520 SOM Somalia

522 DJI Djibouti

530 ETH Ethiopia

531 ERI Eritrea

540 ANG Angola

541 MZM Mozambique

551 ZAM Zambia

552 ZIM Zimbabwe

553 MAW Malawi

560 SAF South Africa

565 NAM Namibia

570 LES Lesotho

571 BOT Botswana

572 SWA Swaziland

Num. code 3 letter code Name

580 MAG Madagascar

581 COM Comoros

590 MAS Mauritius

591 SEY Seychelles

600 MOR Morocco

615 ALG Algeria

616 TUN Tunisia

620 LIB Libya

625 SUD Sudan

626 SSD South Sudan

630 IRN Iran

640 TUR Turkey

645 IRQ Iraq

651 EGY Egypt

652 SYR Syria

660 LEB Lebanon

663 JOR Jordan

666 ISR Israel

670 SAU Saudi Arabia

678 YAR Yemen Arab Republic

679 YEM Yemen

680 YPR Yemen People’s Republic

690 KUW Kuwait

692 BAH Bahrain

694 QAT Qatar

696 UAE United Arab Emirates

698 OMA Oman

700 AFG Afghanistan

701 TKM Turkmenistan

702 TAJ Tajikistan

703 KYR Kyrgyzstan

704 UZB Uzbekistan

705 KZK Kazakhstan

710 CHN China

712 MON Mongolia

713 TAW Taiwan

730 KOR Korea

731 PRK North Korea

732 ROK South Korea

740 JPN Japan

750 IND India

760 BHU Bhutan

770 PAK Pakistan

771 BNG Bangladesh

775 MYA Myanmar

780 SRI Sri Lanka

781 MAD Maldives

790 NEP Nepal

800 THI Thailand

811 CAM Cambodia

812 LAO Laos

816 DRV Vietnam

817 RVN Republic of Vietnam

820 MAL Malaysia

830 SIN Singapore

835 BRU Brunei

840 PHI Philippines

850 INS Indonesia

860 ETM East Timor

900 AUL Australia

910 PNG Papua New Guinea

920 NEW New Zealand

935 VAN Vanuatu

940 SOL Solomon Islands

946 KIR Kiribati

947 TUV Tuvalu

950 FIJ Fiji

955 TON Tonga

970 NAU Nauru

983 MSI Marshall Islands

986 PAL Palau

987 FSM Federated States of Micronesia

990 WSM Samoa

TABLE S1: COW’s state list. Every country is identified by a numeric code and a three-letter code.
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Once the correspondence between databases was established, we were able to reconstruct the trade flows. In the
database, there were four numbers between any two countries i and j: ωii→j , ω

j
i→j , ω

i
j→i and ωjj→i, where the upper

index represents the reporting country and the arrow represents the direction of the flow of goods. According to the
COW Project, the importer’s value is generally more reliable than the exporter’s—due to the taxes to which imports
are subject—, so we have used the values of ωji→j and ωij→i whenever they were available. If these values were not

reported, we used the exporters’ values ωii→j and ωjj→i instead. In Fig. S1 we compare the trade flows of 1997 in
both databases, DBI and DBII. In most cases, the flows are equal. Indeed, the difference between values is smaller
than 10−2 US Million $ in the 96.1% of cases, which indicates a very good agreement (notice also that there is no
abrupt change in any of the results between 1996 and 1997 despite the change of database). The few differences are
due to rounding criteria in some cases—we round to the second decimal place if the flow is larger than 1 US Million
$, whereas there appear to be different rounding criteria in DBI—and to differences in the original IMF datasets
in others—the differences between the importers’ and the exporters’ reported values is very large in some cases (for
instance, ωSLVSLV→ZIM ≈ 160000 US $ while ωZIMSLV→ZIM ≈ 15 US $), so the biggest differences between both datasets
are probably caused by the absence of some importers’ reports when DBI was constructed. Nonetheless, as stated
above, these cases are very rare.
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FIG. S1: Comparison between DBI and DBII in 1997. Each point corresponds to the values of a common trade flow in both
databases. Although some dispersion can be observed, most points lay in the diagonal (the difference between both values is
less than 10−2 US Million $ in the 96.1% of cases). Indeed, there is no abrupt change in any of the results between 1996 and
1997 despite the change of database.

The GDP data were obtained from three different sources: The Maddison Project [4] from 1870 to 1949, Gleditsch’s
GDP data [5] from 1950 to 2011 and data from the World Bank and the CIA World Factbook [6] for years 2012 and
2013. As in the case of the trade data, we needed to match the countries in these databases with the COW’s state list.
The Maddison Project provides GDP data with a fixed country list, so the two country lists were very different. We
thus provide a detailed table (Table S2) in which we show how the GDPs of all datasets have been distributed among
the countries in our networks. Moreover, since trade is reported in current US Million dollars, we have converted
the real GDP values into current GDP values using the deflator calculated by comparing Maddison’s data with data
from [7].
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Country in dataset COW state Period

Yugoslavia Turkey 1870 - 1877

Romania Turkey 1870 - 1877

Tunisia France 1882 - 1955

Egypt UK 1883 - 1936

North Korea China 1870 - 1886

South Korea China 1870 - 1886

North Korea Korea 1887 - 1905

South Korea Korea 1887 - 1905

North Korea Japan 1906 - 1948

South Korea Japan 1906 - 1949

Philippines Spain 1870 - 1897

Philippines USA 1898 - 1945

Norway Sweden 1870 - 1904

Bulgaria Turkey 1870 - 1907

Morocco France 1913 - 1955

Albania Turkey 1870 - 1913

Samoa Germany 1900 - 1914

Samoa New Zealand 1915 - 1962

Finland Russia 1870 - 1916

Czechoslovakia Austria-Hungary 1870 - 1917

Poland Austria-Hungary, Russia, Germany 1870 - 1917

Austria Austria-Hungary 1870 - 1918

Hungary Austria-Hungary 1870 - 1918

Canada UK 1870 - 1919

South Africa UK 1870 - 1919

Australia UK 1870 - 1919

New Zealand UK 1870 - 1919

Syria Turkey 1870 - 1919

Lebanon Turkey 1870 - 1919

Syria France 1920 - 1945

Lebanon France 1920 - 1945

Ireland UK 1870 - 1921

Iraq UK 1870 - 1931

Malaysia UK 1870 - 1941

Country in dataset COW state Period

Malaysia Japan 1942 - 1956

Singapore UK 1870 - 1941

Singapore Japan 1942 - 1964

Jordan UK 1870 - 1945

India UK 1870 - 1946

Myanmar UK 1870 - 1947

Sri Lanka UK 1870 - 1947

Taiwan China 1870 - 1948

Indonesia Netherlands 1870 - 1948

Vietnam France 1870 - 1953

Ghana UK 1870 - 1956

Syria Egypt 1959 - 1960

Jamaica UK 1870 - 1961

Algeria France 1870 - 1961

Bangladesh Pakistan 1947 - 1970

Oman Uk 1950 - 1970

Bhutan India 1950 - 1970

Marshall Islands USA 1986 - 1990

Micronesia USA 1986 - 1990

Tonga UK 1970 - 1998

Kiribati UK 1979 - 1998

Tuvalu UK 1978 - 1999

Macedonia Yugoslavia 1992

Croatia Yugoslavia 1991

Serbia Yugoslavia 2006 - 2013

Abkhazia Georgia 2008 - 2011

South Ossetia Georgia 2008 - 2011

Montenegro Yugoslavia 2006

Kosovo Yugoslavia 2008

German Federal Republic Germany 1991 - 2011

Arab Republic of Yemen Yemen 1990 - 2011

People’s Republic of Yemen Yemen 1990

Macao China 2012 - 2013

Hong Kong China 2012 - 2013

TABLE S2: Assignments of GDPs between different datasets. The left column corresponds to the county in the original dataset
(Maddison Project, Gleditsch’s GDP data, World Bank or CIA Factbook). The right column shows the state in the COW’s
state list to which the GDP value has been assigned in the period displayed in the third column. In the case of Poland between
1870 – 1917, we have assigned a third of its GDP to each country in the second column.

The PTAs data was obtained from the World Trade Organization (WTO) (Ref. [41] in the paper). Again, we
matched the names of countries with the ones in our data.

II. METHODS

In this section we give a detailed description of the methods used in this work. We first show some trends in the
reconstructed trade networks that are related to globalization (Section II A), we then explain how we filtered the
networks to obtain the backbones (Section II B), how we embedded the backbones into hyperbolic space (Section
II C) and, finally, in Section II D we describe the Critical Gap Method (CGM) for community detection, which relies
on the geometrical information obtained from the hyperbolic embedding.
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A. Traits of globalization in the reconstructed trade networks

1870 1900 1930 1960 1990 2013
Year

0

50

100

150

200
A

# of countries
〈k〉 Network
〈k〉 Backbone

1870 1900 1930 1960 1990 2013
Year

10−2

10−1

100

W
ei

gh
tf

ra
ct

io
n

B

ωT /GDP

ωBB/ωT

1870 1900 1930 1960 1990 2013
Year

0.4

0.6

0.8

1.0

〈d
g
,n
et
〉/
〈d

g
〉

C

FIG. S2: Comparison between the properties of the original world trade network and the corresponding backbone extracted
from it for the different years. A: Evolution of the number of states and the average number of trade partners per country,
〈k〉, both for the original network and the backbone. B: Evolution of the ratio between total trade ωT and world’s GDP. The
sparsity of points before the WWII is due to lack of GDP data. The plot also shows the fraction of total weight that is retained
in the backbone (70% ∼ 80%). C: Evolution of the ratio between the average geographic distance of trade channels 〈dg,net〉
and the average distance among any pair of countries in the world 〈dg〉.

The reconstructed trade networks over the past fourteen decades show trends consistent with globalization. The
average number of trade partners per country 〈k〉 increases at a faster rate than that of the number of countries N ,
Fig. S2A. As a consequence, the density of connections 〈k〉/(N − 1) has boosted from 0.2 to 0.7 in the period under
study. The temporal evolution of the total international trade—measured as a percentage of the sum of all national
gross domestic products (GDPs)—presents a similar trend, with a major reversal in the interwar periods, Fig. S2B.
At the same time, the average geographic length of trade channels has been growing as compared to the average
distance among all pairs of countries in the system, Fig. S2C.

B. Backbone construction

The overall flux organization at the global scale can be characterized by the distribution P (ωij) denoting the
probability that any given connection is carrying a flow ωij . The observed distribution is heavy-tailed and spans
approximately four orders of magnitude (Ref. [11] in the paper). Such a feature implies that only a small percentage
of all the connections in the network carry most of its total flow, with most of the flows below the average and some
of them with a much higher value. Heterogeneity is also present at the local level; i.e., in the distribution of flows
associated to the connections of a given country.

In order to assess the effect of inhomogeneities at the local level, for each country i with k trade partners we calculate
the extensively used in economics standard indicator of market concentration referred to as the Herfindahl-Hirschman
Index or HHI (Refs. [31, 32] in the paper), also denoted as the disparity measure in the complex networks literature [8],

kYi(k) = k
∑
j

(
ωij
si

)2

, (S1)

where ωij is the total flow between countries i and j and si =
∑
j ωij is the strength (aggregated trade) of country

i. If country i distributes its trade homogeneously between its trade partners, kYi(k) = 1, whereas in the opposite
case—if all its trade is concentrated on a single link—, kYi(k) = k. The local heterogeneity in the distribution of
trade reveals that not all trade channels are equally significant (see Fig. S3) and thus the disparity filter (Ref. [33] in
the paper) can be applied in order to select only trade channels that are significant to at least one of the countries at
the end of the channel.
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FIG. S3: Evolution of the disparity of all countries in the WTW. Each point in each plot corresponds to a pair (ki, kYi(k)),
where ki is the degree of country i and kYi(k) is calculated according to Eq. (S1). The gray area corresponds to the average
plus 2 standard deviations given by the null model.

The disparity filter proceeds as follows. For each trade channel of a given country i, we compute the probability
αij that the link takes the observed value ωij/si according to the purely random null model in which countries assign
their trade among their partners randomly from a uniform distribution. By imposing a significance level α, we can
determine the statistical significance of a given trade channel by comparing αij to α. Therefore, if αij > α, the flow
through that trade channel can be considered compatible with a random distribution (with the chosen significance
level α) and is thus discarded. The statistically relevant channels are those that satisfy

αij = 1− (k − 1)

ωij/si∫
0

(1− x)k−2dx < α (S2)

for at least one of the two countries i and j.
By applying this selection rule to all the links in the network we find the backbone, a new graph containing, in

general, less links and nodes. However, the number of links and nodes removed depends on the value of the significance
level α. In order to find the appropriate value of α it is convenient to plot the fraction of remaining nodes in the
backbone NBB/N vs. the fraction of remaining links LBB/L for different values of α (Fig. S4). As the filter becomes
more restrictive, the number of links decreases while keeping almost all nodes until a certain critical point αc after
which the number of nodes starts a steep decay. This behaviour is due to the fact that the disparity filter for α = αc
is able to select the minimal set of significant links that preserve the global connectivity and whose removal results in
the isolation of nodes. Geometrically, αc can be identified with the value of the significance level whose corresponding
point in the NBB/N − LBB/L plane maximizes the vertical distance to the diagonal. Notice that on the diagonal
NBB/N = LBB/L such that 〈k〉BB = 2LBB/NBB = 2L/N = 〈k〉. Consequently, setting α = αc, where αc is chosen
according to the geometric rule stated above, minimizes the average degree of the backbone 〈k〉BB . This offers a
consistent and systematic criterion to extract the backbones of the World Trade Web at different years. In Fig. S4 we
show the curves NBB/N vs. LBB/L as well as the points at which the backbones were extracted. The corresponding
values of αc can be found in Table S4.
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FIG. S4: Curves representing the fraction of nodes NBB/N vs. the fraction of links LBB/L in the backbones parametrized by
α. The green squares indicate the values that correspond to the backbone with α = αc which maximizes the vertical distance
to the diagonal (constrained by NBB/N ≥ 0.8 (NBB/N ≥ 0.7 in 1894) so that most countries remain in the system. Moreover,
in order to avoid fluctuations in the topology between years, the 1975 backbone was selected with a higher link fraction than
the given by the geometric rule.)

C. Embedding into hyperbolic space

Hyperbolic geometry has been conjectured as the natural geometry underlying real complex networks (Refs. [21] and
[37] in the paper). It is one of the three possible cases of homogeneous and isotropic geometries of constant curvature
(in this case negative; the other cases are euclidean and spherical geometries, with zero and positive curvature,
respectively). The two pivotal properties of hyperbolic space that make it the natural geometry underlying real
complex networks are that it is a metric space, which can induce a non-tree-like topology with clustering (triangles or
transitive relations in the graph), and that, due to its negative curvature, space grows exponentially fast with distance.
This is homologous to the exponential growth of the number of nodes with diameter observed in small-world networks.
It has been proved that random graphs generated from a homogeneous distribution of points in a finite hyperbolic
plane have the same topological properties of real complex networks (Ref. [20] in the paper); namely, scale-free degree
distributions, strong clustering, the small-world property, etc.

Let us briefly review the hyperbolic model of complex networks (Ref. [20] in the paper) according to which the
embedding is performed. In that model, scale-free networks are generated by scattering N nodes randomly into a
hyperbolic disk of radius

R = 2 log

[
2N

〈k〉β sin π
β

(
γ − 1

γ − 2

)2
]
, (S3)

where 〈k〉 is the target average degree of the resulting network, γ is the target exponent of the power-law degree
distribution, P (k) ∼ k−γ , and the inverse temperature β is a function of the target average clustering coefficient C̄.
The distribution of nodes is quasi-uniform, meaning that the angular coordinates θ ∈ [0, 2π] are distributed uniformly,
whereas the radial coordinates r ∈ [0, R] are distributed with density

ρ(r) = νeν(r−R), (S4)

where ν = (γ − 1)/2. Every pair of nodes (i, j) is then connected with a probability that depends on the hyperbolic
distance dh,ij between them as

p(dh,ij) =
1

1 + e
β
2 (dh,ij−R)

, (S5)

which is the Fermi-Dirac distribution. The distance dh,ij between two nodes with coordinates (ri, θi) and (rj , θj) is
given by the hyperbolic law of cosines,

cosh dh,ij = cosh ri cosh rj − sinh ri sinh rj cos da,ij , (S6)



12

C2

C1

A2
A1

B1 B2

ΚC2

ΚC1

ΚA2

ΚA1

ΚB1

ΚB2

da,B

da,C

da,A

A

C2

C1

A2
A1

B1

B2B

1

FIG. S5: Hyperbolic representation of the gravity model. Three different pairs of nodes A1−A2, B1−B2 and C1−C2

have been highlighted. A: Gravity model—Eq. (1) in the paper—in which the effective distance da is given by the angular
separation in the circle. The size of a node is proportional to its economic size κ. B: Hyperbolic space representation of the
gravity model of trade channels. The three different pairs of nodes are separated by the same hyperbolic distance. Notice
that all nodes are equal size and that nodes with higher degree (larger size in A) are positioned closer to the centre in the
hyperbolic plane. Nodes at the same hyperbolic distance can be separated by different angular distances depending on their
degrees (sizes). As an example, nodes A1−A2 with small degree and very low angular separation can be far apart in hyperbolic
space.

where da,ij ≡ min(|∆θij |, 2π − |∆θij |). The angular separation in hyperbolic space still corresponds to the effective
distance in the gravity model of trade channels and it is the radial component which captures the contribution of
economic size. The advantage of this approach is that it condensates in a pure geometric framework the properties of
the entire system—economic size and effective distance in the gravity model, Eq. (1) in the paper; that is, it allows to
draw genuine maps of the trade system where different parts can be compared on an equal footing. More specifically,
due to the inverse relation between economic size κ and hyperbolic radius r, large economies with high degrees are
located close to the center of the disk, whereas small economies are placed near its boundary. The comparison of
distances also needs of some care. While the hyperbolic distance between the origin of coordinates and any point
at radial coordinate r is simply r, hyperbolic distances between points with angular separations are more involved.
The expression for the approximated hyperbolic distance between any two countries i and j, xij , introduced in the
paper gives us some clues to interpret it. Such distance is roughly the sum of the distances between the two points
and the origin of coordinates minus a term that depends on the angular separation between them. This means that
the geodesic (or shortest) path connecting i and j first approaches the center of the disk, it bends until it reaches
the angular coordinate of j and then moves away from the origin until j is reached. This is illustrated in Fig. S5,
where several hyperbolic distances of the same magnitude are plotted. Note that countries in the hyperbolic plane
representation are all equal size since all the factors determining their likelihood to form trade channels—angular
trade distances and economic sizes in our gravity model—are combined into hyperbolic distances.

This model can also be used to embed networks into hyperbolic space, i.e., to build maps in which distances depend
purely on the observed connections between nodes. To do so, we reverse the network generation process: instead
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of generating a network from the coordinates of nodes, we need to find the positions of nodes given the resulting
network. The way to proceed is to find the coordinates of every country such that the likelihood that the observed
WTW is generated by the model described above is maximal. The likelihood is given by

L =
∏
i<j

[p(dh,ij)]
aij [1− p(dh,ij)]1−aij , (S7)

where aij = 1 if countries i and j are connected and aij = 0 otherwise. Note that, in the above expression, aij
depends on the real trade data, whereas p(dh,ij) depends on the {(r, θ)} coordinates to be inferred. Moreover, the
connection probability Eq. (S5) depends also on the global parameters N , 〈k〉, γ and β, so they must be known in
order to compute (and therefore to maximize) Eq. (S7). The likelihood maximization thus requires the following two
steps:

• Estimating the global parameters: The value of the exponent γ can be found from the linear fit to the curve
logPc(k) vs. log k, where Pc(k) =

∫∞
k
P (k′)dk′ is the complementary cumulative degree distribution giving the

probability that a randomly chosen node in the network has degree greater or equal to k. From its expression,
it is clear that for a power-law degree distribution with exponent γ, Pc(k) ∼ k1−γ . Thus, the curve logPc(k)
vs. log k is the straight line logPc(k) = (1 − γ) log k + c, which allows to obtain γ from its slope. Due to the
small number of nodes in the system, we have constrained the values of γ ≥ 2.15.

Although the values of the parameters N and 〈k〉 seem to be clear, they must be chosen carefully. When a
synthetic network is generated with the model, some of its nodes may have no connections (which is more likely
to occur for very sparse graphs) and we do not consider them as belonging to the system. Hence, the target
N and 〈k〉 can be different from the observed ones. For very large systems, these differences can be estimated
analytically, but in this case we are considering networks with less than 200 nodes.

The value of β is also difficult to estimate. It affects the resulting average clustering coefficient C̄ (indeed, C̄
increases with increasing β) but the exact value cannot be obtained by analytic means, so we must devise some
other method to compute its value.

Due to theses difficulties, we have estimated the three parameters N , 〈k〉 and β by comparing the real networks
to synthetic networks generated with the model using different values for the three target parameters. The
detailed procedure we followed reads:

1. Measure γ, Nobs, 〈k〉obs and C̄obs, i. e. the exponent of the degree distribution, the number of nodes, average
degree and average clustering of the network.

2. Initialize the target variables Ntarg, 〈k〉targ and βtarg using some values as initial guess. In our case, we
used Ntarg = Nobs + 10, 〈k〉targ = 4〈k〉obs and βtarg = 5.5.

3. Generate a synthetic network using the target variables and the observed value of γ.

4. Measure Nsynth, 〈k〉synth and C̄synth on the synthetic network.

5. If |Nsynth − Nobs| < εN ∧ |〈k〉synth − 〈k〉obs| < ε〈k〉 ∧ |C̄synth − C̄obs| < εC̄ , the synthetic network can be
considered similar to the observed one, so the values Ntarg, 〈k〉targ and βtarg used to generate it are good
estimations to be used in Eq. (S7). Keep them and stop. If the condition is not fulfilled, go to step 6.

6. If Nsynth < Nobs ⇒ Ntarg + δN → Ntarg. Else Ntarg − δN → Ntarg.

If 〈k〉synth < 〈k〉obs ⇒ 〈k〉targ + δ〈k〉 → 〈k〉targ. Else 〈k〉targ − δ〈k〉 → 〈k〉targ.
If C̄synth < C̄obs ⇒ βtarg + δβ → βtarg. Else βtarg − δβ → βtarg.

Go to step 3.

Using this method, the resulting synthetic networks can be considered similar to the real ones, so the obtained
values of the parameters are good estimations. In our case, for every World Trade Network, that is, for every
network representing the trade of a particular year, we have run the algorithm explained above 20 times, so the
values of N , 〈k〉 and β used in this work are an average over 20 estimations. Moreover, we have set εN = 1,
ε〈k〉 = 0.1〈k〉obs and εC̄ = 0.05. δN was set to 1, while δ〈k〉 and δβ had no fixed values; every time step 6 was
run, their values were withdrawn from the uniform distribution U(0, 0.2). To achieve the convergence of the
method, it was also useful to constrain the value of β between 2.1 and 6.5.

• Finding the coordinates of nodes: Once the global parameters are known, Eq. (S7) can be maximized. To
this end, we have used the Metropolis-Hastings algorithm with few variations, as explained below. Since we are
not embedding a single network but a sequence of them, we have taken as initial coordinates of a given country
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the ones obtained in the previous embedding (if the country belonged to it). Furthermore, we first embedded the
network with more nodes, the one corresponding to year 2013, and the rest of them sequentially in decreasing
order. Notice also that it is convenient to maximize the logarithm of L, which we will denote as log-likelihood
lnL, instead of L itself to avoid numerical issues. The steps to embed the network corresponding to year Y are:

1. Initial positions: for every country i in the current network:

i. If i belongs to the WTW of year Y + 1, set (ri, θi) to the values of the Y + 1 embedding (constrain ri
so that it is not larger than R). Else, choose ri randomly from U(0, R) and θi from U(0, 2π).

ii. Set (r̃i, θ̃i) = (ri, θi). These variables will record the maximum-likelihood configuration.

2. Compute initial log-likelihood lnL using Eq. (S7). Set ln L̃ = lnL. This variable will record the
highest value of the log-likelihood.

3. Maximize likelihood: Repeat S ×N2 times (in all cases, we observed that S = 30 is enough to achieve
convergence):

i. Choose a node i at random from the list [2, N ]; notice that we never select node 1 (which corresponds
to the USA, the most persistent hub in time) in order to keep its angular coordinate unchanged. The
reason to do so is that the likelihood L is invariant with respect to global rotations of the system.
Hence, not varying the angular coordinate of one of the nodes anchors the embedding by breaking this
symmetry.
Propose a value for θ′i from U(0, 2π).

Compute the log-likelihood increment as ∆ lnL =
∑
j 6=i aij

(
ln p(d′h,ij)− ln p(dh,ij)

)
+ (1 −

aij)
(

ln(1− p(d′h,ij))− ln(1− p(dh,ij))
)

. Notice that only N − 1 steps are required, as opposed to

calculating the new log-likelihood as in step 2.
If ∆ lnL ≥ 0 set θi = θ′i to accept the change. Otherwise, accept the change with probability e∆ lnL =
Lnew/Lold < 1.

If the change is accepted, give lnL the new value lnL+∆ lnL→ lnL. If lnL > ln L̃ set (r̃i, θ̃i) = (ri, θi)

and ln L̃ = lnL.

ii. Choose a node i at random from the list [1, N ].
Propose a value for r′i from U(0, R).

Compute the log-likelihood increment as ∆ lnL =
∑
j 6=i aij

(
ln p(d′h,ij)− ln p(dh,ij)

)
+ (1 −

aij)
(

ln(1− p(d′h,ij))− ln(1− p(dh,ij))
)

.

If ∆ lnL ≥ 0 set ri = r′i to accept the change. Otherwise, accept the change with probability e∆ lnL =
Lnew/Lold < 1.

If the change is accepted, give lnL the new value lnL+∆ lnL→ lnL. If lnL > ln L̃ set (r̃i, θ̃i) = (ri, θi)

and ln L̃ = lnL.

For every year Y , we have repeated this algorithm 10 times and kept the maximum-likelihood configuration in
all 10 embeddings. We have then run step 3 starting with such initial configuration but accepting the changes
if and only if ∆ lnL > 0.

It is also important to point out that L has a very complex landscape with many degeneracies, that is, configu-
rations with similar likelihood. Usually, the difference between these configurations is the inversion of a whole
community. Such a change mildly affects a small fraction of the pairs of distances dh,ij only and, therefore, L
takes a similar value. In order to obtain statistically reliable distances between countries, we have also found
the coordinates of nodes in every network 100 times starting with completely random positions and computed
their average distances (both hyperbolic and angular) and connection probabilities, as well as their fluctuations
(see Fig. S6).
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FIG. S6: Top: Average normalized angular distances 〈d̃a,ij〉 between every pair of countries (i, j) in 2013. Nodes have been
ordered such that nearest neighbours are consecutive. The dark squares in the matrix reveal the community structure of the
WTW. Bottom: Average normalized hyperbolic distances 〈d̃h,ij〉 between every pair of countries (i, j) in 2013. The ordering
of the countries is the same as in the top matrix.
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In order to quantify the quality of the embeddings, we have run local and global tests. Local tests aim at quantifying
the pairwise similarities between the model and the real data, while the global tests we have run provide evidence
of the meaningfulness of the embeddings by showing that the geometrical information can be used to navigate the
network efficiently.

• Local tests: The first check we have run is computing numerically the empirical connection probability for each
embedding. To do so, we have performed a binning in M subintervals of the interval in which all the possible
values of the effective distance e

1
2 (dh,ij−R) lay and then counted, for every bin, the fraction of connected pairs

out of all those whose effective distances fall into the bin. If the embedding method works properly and the
network can be described by the hyperbolic model, the empirical connection probability should resemble the
Fermi-Dirac probability distribution function (see Eq. (S5)). The results are shown in Fig. S7.
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FIG. S7: Evolution of the empirical connection probability for all embeddings. The plots show a very good agreement between
the theoretical curves (dashed lines) and the measurements in red, indicating both the similarity between the data and the
model and the effectiveness of the embedding procedure described in Section II C.

The second local test we have considered is the receiver operating characteristic (ROC) curve. Once a network
is embedded, Eq. (S5) assigns a connection probability pij to each pair of nodes, whether they are connected or
not. If we define a threshold probability p, we can consider each pair as connected according to the model if and
only if pij > p and then compute the true positive rate (TPR)—the fraction of real links also predicted by the
model—and the false positive rate (FPR)—the fraction of links that do not exist in the network but have been
predicted to exist by the model. The result is a point in the TPR–FPR plane. Notice that a perfect prediction
would correspond to TPR=1 and FPR=0. Since the test depends on the value of p, it is customary to compute
the curve in the TPR–FPR space obtained by computing the two magnitudes for different values of p between
0 and 1. Fig. S8 shows the ROC curves for different years. Clearly, they approach the perfect prediction point
for some value of p, evidencing the similarities between the WTW and the hyperbolic model. The area under
the curve (AUC) provides a quantization of the results. The best possible result corresponds to AUC=1; as we
show in the paper, its value is well above 0.975 in all embeddings.
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FIG. S8: Evolution of the reciever operating characteristic (ROC) curve, defined as the sequence of pairs (TPR, FPR)
parametrized by the threshold probability p. All curves approach the optimal point TPR=1, FPR=0. Again, this evidences
the good agreement between the data and the model. The integral of these curves is above 0.975 in all cases (see paper).

Finally, we have also computed the expected degree 〈ki〉 of every node defined as 〈ki〉 =
∑
j 6=i

pij , where pij is

given by Eq. (S5) and the distance is calculated using the coordinates of the embedding and Eq. (S6). Fig. S9
shows that these quantities match almost perfectly the real values ki, in accordance with MLE for expected
degrees (Ref. [23] in the paper).
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FIG. S9: Expected degrees of nodes 〈ki〉 =
∑
j 6=i

pij versus real degrees ki. The two values are equal in almost all cases, which

validates the quality of the description of the system by the model.

• Global tests: The three tests presented so far do only take into account local (pairwise) information. Hence,
passing those tests is a necessary but not sufficient proof of the quality and meaningfulness of the geometrical
information encoded by the embeddings. We now complement this validation by measuring the efficiency of the
greedy forwarding procedure.

Finding the shortest path between two nodes in a network is a computationally expensive problem. However, it
has been previously shown (Ref. [23] in the paper) that the geometrical information provided by the embedding
into hyperbolic space can be used to navigate the network efficiently by following the very simple rule of greedy
forwarding: to go from any node to node j, hop to the current node’s neighbour that is closest (according to
Eq. (S6)) to j. Following this procedure in a badly embedded network can present two issues. On the one hand,
one can get trapped describing loops endlessly and, on the other hand, even if the destination is reached the
number of hops needed might be much larger than the shortest path length, i. e. the minimum number of hops
actually required.

We have thus measured the success rate—the fraction of pairs (i, j) for which it is possible to reach j from i via
greedy forwarding—and the average stretch—the average over all successful routings of the quotient between
the number of hops required by greedy forwarding and the shortest path length. Notice that, for every pair,
both directions must be checked, since the process is not necessarily symmetric. We have also compared the
results with the ones measured on the same networks with the same radial coordinates but with randomized
angular coordinates. The results are displayed in Fig. S10. As the number of countries grows, the success rate
for the randomized embeddings decreases, reaching values as low as 0.5, whereas it takes an almost constant
value of 1 along the whole period for the real embeddings. The stretch increases for the last years in both cases.
However, notice that it is always closer to 1 for the real embedding even though it is computed over almost all
pairs of nodes, as opposed to the value corresponding to the randomized version, in which the computation only
takes into account the successful fraction of pairs, which is low.
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FIG. S10: Greedy forwarding metrics of the embeddings compared to the randomization of angular coordinates. In both
cases, the real embedding values are closer to 1. Top: Success rate of greedy forwarding. Bottom: Stretch (average path
length over shortest path length) of the successful greedy forwarding paths. Notice that the values for the real embeddings are
lower even though they have been calculated over almost all possible pairs of nodes. Both results are strong evidence of the
meaningfulness of the geometrical information contained in the embeddings; indeed, the coordinates of nodes are found using
pairwise information only (Eq. (S7)), but the resulting map sucessfully encodes the global information required to efficiently
navigate the network.

D. Community detection

Nodes near the center of the hyperbolic disk are close to many nodes in the system and therefore have a large
number of connections, whereas nodes in the periphery are only close to those with a similar angular coordinate.
According to Ref. [21] in the paper, the radial and angular coordinates can be interpreted as the popularity and
similarity coordinates, respectively. Therefore, to partition the network into communities with similar nodes, we must
take into account the angular coordinates of nodes. Indeed, the model assumes a uniform angular density, so the
clusterization of nodes around certain angular coordinates reveals regions in which nodes tend to connect with each
other profusely. The Critical Gap Method (CGM) relies in this idea to detect communities by finding angular regions
that are densely populated in order to maximize modularity Q [9], the standard measure in community detection.
This quantity, which is bounded Q ∈ [−1, 1], compares the fraction of links inside communities with the expected
fraction for a random distribution of edges, and is equal to 0 if nodes are randomly assigned into communities. The
method then reads:
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1. Set the value of Q̃ = −1. This variable will encode the highest value of Q.

2. Increase the value of the critical gap gc sequentially from 0 to 1. For every value:

i. Connect all pairs of nodes (i, j) whose normalized angular distance d̃a,ij ≤ gc.
ii. Find all the connected components in the resulting graph.

iii. Assign all nodes in the same connected component to the same community.

iv. Compute the modularity Q of the partition. If Q > Q̃ set Q→ Q̃ and keep the partition.

At the end of the process, the partition with the highest modularity is kept. Notice that this method is equivalent
to considering all gaps larger than gc between consecutive nodes in the circle—that is, nodes between which there
are no other nodes—as community boundaries. However, the algorithm we presented here is more general and allows
working with distances instead of using coordinates. This is useful because average distances are more reliable but do
not generally admit an embedding onto the circle (so they do not always contain information about consecutiveness).
In Fig. S11 we compare the values of Q obtained using three methods: Louvain [10], Infomap [11] and CGM. Even
though the modularity of the partitions obtained from CGM is slightly smaller than the one obtained from Louvain,
the former show higher similarities with Preferential Trade Agreements.

In the paper we show the normalized mutual information (MI) between PTAs and both sets of partitions. The
normalized mutual information of two partitions X and Y is defined as

MI =

∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x,y)
p(x)p(y)

)
max{H(X), H(Y )} , (S8)

where

H(X) = −
∑
x∈X

p(x) log p(x) (S9)

and

H(Y ) = −
∑
y∈Y

p(y) log p(y). (S10)

Thus, if two partitions X and Y are equal, p(x, y) = p(x) = p(y) and MI = 1. On the other hand, if the two partitions
are uncorrelated, p(x, y) = p(x)p(y), the logarithm in Eq. (S8) is null and, hence, MI = 0.
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FIG. S11: Comparison between the modularities Q of the partitions found by three different methods. Both CGM and Louvain
methods give better partitions than Infomap in almost all cases. The partitions found using CGM give modularities slightly
lower than Louvain. However, the mutual information with PTAs is higher with the CGM partitions than with the Louvain
partitions due to the capability of the former to resolve smaller communities.
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E. Preferential Trade Agreements
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FIG. S12: Evolution of the average normalized distances (geographical d̃g, angular d̃a and hyperbolic d̃h) as well as the average
connection probabilities between countries in every PTA. The vertical dashed lines represent the years of new accessions into
the PTA. The red dashed lines correspond to the 1/2 value. Since distances are normalized with respect to the maximum

possible distance in each case, it represents the average separation for both d̃g and d̃a for a uniform random distribution of
points and the radius R in the hyperbolic case.
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• PTAs with 〈d̃a〉 close but above the geographic value: North American Free Trade Agreement NAFTA,
Central American Common Market CACM, Caribbean Community and Common Market CARICOM, Pacific
Island Countries Trade Agreement PICTA, Economic Cooperation Organization ECO, and PTAs in Africa,
like SADC, WAEMU, CEMAC, ECOWAS, and in Latin America LAIA.

• PTAs with 〈d̃a〉 and 〈d̃g〉 extremely congruent and a world-wide spread composition: Protocol on
Trade Negotiations PTN, Global System of Trade Preferences among Developing Countries GSTP.

• PTAs with 〈d̃a〉 and 〈d̃g〉 extremely congruent and a strong geographical orientation: Southern
Common Market MERCOSUR, Commonwealth of Independent States CIS).

• PTAs interconnecting Russia and the republics of the Soviet Union (Russian Federation - Belarus -

Kazakhstan, Eurasian Economic Community EAEC, Common Economic Zone CEZ) have a value of 〈d̃a〉 below
the geographical average.

• PTAs for which both the average normalized angular and hyperbolic distances decrease, extremely
mildly: Pan-Arab Free Trade Area PAFTA, Dominican Republic - Central America - United States Free Trade
Agreement CAFTA-DR, Andean Community CAN, Southern African Customs Union SACU, Common Market
for Eastern and Southern Africa COMESA, East African Community EAC.
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