

Supplementary Figure 1

1

2 Supplementary Figure 1. Induction of *p53* LOH by MADM.

	Supplementary Figure 2
Su	pplementary Figure 2. <i>Pdx1-Cre</i> induces MADM labeling in multiple pancreatic cell
typ	Des.
a)	Pancreas from a 6-month-old $Pdx1$ -Cre; K-MADM-p53 mouse contained $p53^{KO/KO}$ (green,
	GFP+/tdTomato-), <i>p53^{WT/WT}</i> (red, GFP-/tdTomato+), and <i>p53^{KO/WT}</i> (yellow,
	GFP+/tdTomato+) acinar cells with normal appearance.
b)	Pancreatic islet harboring green and red cells.
c)	Pancreatic islet harboring green, red, and yellow cells.
d)	Large pancreatic duct (arrow) and smaller nearby ducts (arrowheads) harboring green, red,
	and yellow cells. Blue = DAPI-stained nuclei. All scale bars are 50 μ m.
	Su tyr a) b) c) d)

Supplementary Figure 3

Supplementary Figure 3. Analysis of proliferation and apoptosis in pancreatic and lung

26 tumors.

a) Representative image and quantitation of EdU immunostaining (white) in low-grade PanINs

29		labelled with Tomato or GFP (average +/- s.e.m of n=31 low-power fields from n=2 mice).
30		*p<0.05, two-tailed student's t-test. Blue = DAPI-stained nuclei.
31	b)	Cleaved caspase-3 (CC3) immunostaining (white) of low-grade PanINs reveals rare apoptotic
32		$p53^{KO/KO}$ (green, GFP+/tdTomato-) $p53^{WT/WT}$ (red, GFP-/tdTomato+) and $p53^{KO/WT}$ (yellow,
33		GFP+/tdTomato+) cells (arrows). Most apoptotic cells were found within PanIN lumens
34		(arrowhead). No difference in apoptotic frequency based on $p53$ genotype was observed.
35		Blue = DAPI-stained nuclei.
36	c)	EdU immunostaining (blue) of low-grade lung adenoma reveals few co-labelled $p53^{KO/KO}$
37		(arrowhead) and $p53^{WT/WT}$ (arrow) cells.
38	d)	EdU immunostaining (blue) of lung adenocarcinoma reveals a many EdU-positive $p53^{KO/KO}$
39		cells.
40	e)	Quantitation of the percentage of EdU-positive cells in lung tumors. Shown are average
41		percentage +/- s.e.m. (n=28 low-grade adenomas and n=8 low-power fields of high-grade
42		adenomas from n=3 mice). **p<0.01, two-tailed student's t-test.
43	f)	CC3 immunostaining (blue) of low-grade lung adenoma reveals no apoptotic cells.
44	Al	scale bars are 100 µm.
45		
46		
47		
48		
49		
50		
51		

MADM11						
Primer 1	TGG AGG AGG ACA AAC TGG TCA C					
Primer 2	TTC CCT TTC TGC TTC ATC TTG C					
Primer 3	TCA ATG GGC GGG GGT CGT T					
Cre						
Primer 1	CAC CCT GTT ACG TAT AGC CG					
Primer 2	GAG TCA TCC TTA GCG CCG TA					
Primer 3	CCT TGA GGC TGT CCA AGT GAT TCA GGC CAT CG					
Primer 4	CCA ATC TGC TCA CAC AGG ATA GAG AGG GCA GG					
Kras ^{G12D}						
Primer 1	GTC TTT CCC CAG CAC AGT GC					
Primer 2	CTC TTG CCT ACG CCA CCA GCT C					
Primer 3	AGC TAG CCA CCA TGG CTT GAG TAA GTC TGC A					
Kras ^{LA2}						
Primer 1	TGC ACA GCT TAG TGA GAC CC					
Primer 2	GGA GCA AAG CTG CTA TTG GC					
Primer 3	GAC TGC TCT CTT TCA CCT CC					
р53 ^{ко/wт}						
Primer 1	ACC GCT ATC AGG ACA TAG CGT TGG					
Primer 2	CAC AGC GTG GTG GTA CCT TAT G					
Primer 3	GGT ATA CTC AGA GCC GGC CTG					
flox						
p53 ^{//0x}						
Primer 1	CAC AAA AAC AAG TTA AAC CCA G					
Primer 2	AGC ACA TAG GAG GCA GAG AC					
ISI-053 ^{R172H}						
Primer 1	CTT GGA GAC ATA GCC ACA CTG					
Primer 2	AGC TAG CCA CCA TGG CTT GAG TAA GT					
Primer 3	CAA CTG TTC TAC CTC AAG AGC C					

52 Supplementary Table 1. Genotyping primers

57 Supplementary Table 2. Genotyping protocols

Protocol	Temperature	MADM11	Cre	Kras ^{G12D}	Kras ^{LA2}	р53 ^{ко/wт}	p53 ^{flox}	LSL-p53 ^{R172H}
Step 1	94C	3:00	3:00	3:00	3:00	3:00	3:00	3:00
Step 2	94C	0:15	0:15	0:30	0:30	0:30	0:30	0:30
Step 3	58C (MADM11/Cre) 60C (all others)	0:25	0:25	1:30	1:30	1:30	1:30	1:30
Step 4	72C	0:45	0:45	1:00	1:00	1:00	1:00	1:00
Step 2-4 Cycles		32	32	34	34	34	34	34
Step 5	72C	5:00	5:00	5:00	5:00	5:00	5:00	5:00
Step 6	4C	forever	forever	forever	forever	forever	forever	forever
Expected	WT	350 bp	500 bp	650 bp	220 bp	450 bp	288 bp	364 bp
Band Sizes	Mutant	230 bp	300 bp	500 bp	390 bp	700 bp	370 bp	278 bp

Notes

1. Step times are listed as m:ss.

2. WT *MADM11* band corresponds to endogenous *Hipp11* locus lacking either *MADM11* allele.

3. Mutant MADM11 band corresponds to either MADM11-TG and MADM11-GT alleles.

4. Cre primers are universal (detect Pdx1-Cre and Rosa26-Cre^{ERT2} transgenes).

5. WT Cre band corresponds to beta-globin control

58