Supplementary Tables

Supplementary Table 1. Results from the ten best supported PGLS regression models fitted to explain variance in male log₁₀ F0 with male log₁₀ body mass across 67 terrestrial mammal species.

Model	(Intercept)	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
$BM + \lambda$	4.31	-0.50***				4	120.64
OLS	4.69	-0.54***				4	121.77
OU	4.69	-0.54***				4	121.77
$BM + \lambda$	4.28	-0.52***		+		5	123.65
OLS	4.59	-0.56***		+		5	124.00
OU	4.59	-0.56***		+		5	124.00
$BM + \lambda$	4.35	-0.49***	+			5	124.48
OLS	4.74	-0.54***	+			5	125.67
OU	4.74	-0.54***	+			5	125.67
$BM + \lambda$	4.32	-0.51***	+	+		6	127.67

The PGLS regression models are ordered by AICc value so that the best supported model (with the lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.01). OLS = non-phylogenetic (ordinary least squares) model, BM + λ = Brownian motion + Pagel's lambda, OU = Ornstein-Uhlenbeck model.

Supplementary Table 2. Results from the ten best supported PGLS regression models fitted to explain variance in male $\log_{10} \Delta F$ with male $\log_{10} body$ mass across 35 terrestrial mammal species.

Model	(Intercept)	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
BM	4.03	-0.34***		+**		4	-17.76
OU	4.16	-0.36***		+**		5	-15.97
BM	4.00	-0.30***				3	-15.57
$BM + \lambda$	4.04	-0.34***		+**		5	-15.40
BM	4.05	-0.33***	+	+**		5	-13.84
OU	4.06	-0.30***				4	-13.48
$BM + \lambda$	4.00	-0.30***				4	-13.01
$BM + \lambda$	3.95	-0.30***	+*	+**		6	-12.43
OU	4.15	-0.35***	+	+**		6	-11.62
$BM + \lambda$	3.81	-0.23***	+*			5	-10.72

The PGLS regression models are ordered by AICc value so that the best supported model (with the lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.01). BM = Brownian motion, BM + λ = Brownian motion + Pagel's lambda, OU = Ornstein-Uhlenbeck model.

Supplementary Table 3. Results from the ten best supported PGLS regression models fitted to explain variance in male log₁₀ F0 with male size dimorphism across 67 terrestrial mammal species.

Model	(Intercept)	Size dimorphism	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
$BM + \lambda$	9.26	-4.93	-0.47***				5	116.39
OU	7.69	-2.97	-0.53***				5	119.09
$BM + \lambda$	9.51	-5.21	-0.49***		+		6	119.20
$BM + \lambda$	9.70	-5.31	-0.45***	+			6	119.94
$BM + \lambda$	10.61	-6.45*	-0.46***			+	9	122.24
OU	7.95	-3.17	-0.52***	+			6	122.94
$BM + \lambda$	9.87	-5.53	-0.47***	+	+		7	123.01
$BM + \lambda$	11.01	-6.89*	-0.49***		+	+	10	124.57
BM + Q	10.23	-5.66	-0.49***				5	125.20
OU	8.24	-3.56	-0.54***			+	9	125.37

The PGLS regression models are ordered by AICc value so that the best supported model (with the lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001). BM + λ = Brownian motion + Pagel's lambda, BM + ϱ = Brownian motion + Grafen's rho, OU = Ornstein-Uhlenbeck model.

Supplementary Table 4. Results from the ten best supported PGLS regression models fitted to explain variance in male $\log_{10} \Delta F$ with male size dimorphism across 35 terrestrial mammal species.

Model	(Intercept)	Size dimorphism	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
BM	7.58	-3.58**	-0.31***		+**		5	-25.22
$BM + \lambda$	8.27	-4.25**	-0.31***		+**		6	-23.75
OU	7.90	-3.80**	-0.32***		+**		6	-23.19
BM	7.82	-3.86**	-0.26***				4	-23.05
OU	8.23	-4.17**	-0.27***				5	-21.03
BM	7.45	-3.44**	-0.30***	+	+**		6	-20.90
$BM + \lambda$	8.18	-4.20**	-0.26***				5	-20.61
OU	7.71	-3.61**	-0.31***	+	+**		7	-18.35
$BM + \lambda$	8.06	-4.03**	-0.30***	+	+**		7	-18.29
BM	7.74	-3.77**	-0.25***	+			5	-17.48

The PGLS regression models are ordered by AICc value so that the best supported model (with the lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.01). BM = Brownian motion, BM + λ = Brownian motion + Pagel's lambda, OU = Ornstein-Uhlenbeck model.

Supplementary Table 5. Results from the ten best supported PGLS regression models fitted to explain variance in male log₁₀ F0 with log₁₀ male relative testes size across 42 terrestrial mammal species.

Model	(Intercept)	Log ₁₀ relative testes size	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
OU	4.45	0.39*	-0.42***				5	86.24
BM	3.93	0.33*	-0.36***				4	86.84
$BM + \lambda$	4.15	0.33*	-0.41***				5	87.16
OU	4.41	0.36*	-0.45***		+		6	88.88
BM	3.90	0.31*	-0.37**		+		5	89.86
$BM + \lambda$	4.12	0.31	-0.42***		+		6	90.32
OU	4.49	0.40*	-0.41***	+			6	90.34
OLS	4.65	0.48*	-0.44***				4	90.44
BM	3.93	0.33*	-0.35***	+			5	91.05
BM + Q	4.46	0.43*	-0.42***				5	91.06

The PGLS regression models are ordered by AICc

value so that the best supported model (with the

lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001). OLS = non-phylogenetic (ordinary least squares) model, BM = Brownian motion, BM + λ = Brownian motion + Pagel's lambda, BM + ϱ = Brownian motion + Grafen's rho, OU = Ornstein-Uhlenbeck model.

Supplementary Table 6. Results from the ten best supported PGLS regression models fitted to explain variance in male log₁₀ Δ F with male relative testes size across 24 terrestrial mammal species.

Model	(Intercept)	Log ₁₀ relative testes size	Log ₁₀ male body mass	Call type	Habitat	Mating system	df	AICc
$BM + \lambda$	4.12	0.10***	-0.31***				5	-6.70
BM	4.10	0.10**	-0.31***				4	-5.78
$BM + \lambda$	4.15	0.10**	-0.34***		+		6	-3.75
BM	4.15	0.09**	-0.34***		+		5	-3.65
OU	4.10	0.10**	-0.31***				5	-2.55
BM + Q	4.14	0.11**	-0.32***				5	-2.27
BM + Q	4.06	0.09**	-0.33***		+		6	0.57
$BM + \lambda$	4.11	0.11**	-0.31***	+			6	1.18
BM	4.11	0.10**	-0.31***	+			5	1.29
BM	4.15	0.09**	-0.34***	+	+		6	3.94

The PGLS regression models are ordered by AICc value so that the best supported model (with the lowest AICc value) is first in the list. "+" denotes factor included in the model and statistically significant independent variables are indicated with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.01). BM = Brownian motion, BM + λ = Brownian motion + Pagel's lambda, BM + ϱ = Brownian motion + Grafen's rho, OU = Ornstein-Uhlenbeck model.

Supplementary	Table 7. A	coustic, morpl	hological and	ecological data	for each of the	terrestrial mammal	species in th	ie dataset
		, 1		8			1	

Species	Habitat	Mating system	Male body mass (g)	Size Dimorphism	Male body mass for testes data (g)	Testes mass (g)	Mean F0 (Hz)	Mean ΔF (Hz)	References
Ailuropoda melanoleuca	Terrestrial	PO	117900	1.02	117180	274.7*	372	555	1,2
Alces alces	Terrestrial	PO	323000	1.02	789000	106.0	125	-	3-6
Alopex lagopus	Terrestrial	MO	3500	1.02	4800	4.1	990	-	7-9
Alouatta caraya	Arboreal	PR	6400	1.05	64000	17.0*	50	535	5,10
Alouatta guariba	Arboreal	PO	6700	1.04	67000	8.5*	-	478	10
Alouatta macconnellii	Arboreal	PO	7600	1.05	-	-	-	393	10
Alouatta palliata	Arboreal	PO PO	5800	1.03	7260	23.0	-	581	4,5,10
Alouatta seniculus	Arboreal	PO	6700	1.07	67000	3.6*	-	443	5.10
Bison bison	Terrestrial	PO	863410	1.04	299400	439.8	55	317	5 12-14
Brachyteles hypoxanthus	Arboreal	PR	9600	1.01		-	1731	_	15
Callithrix jacchus	Arboreal	MO	369	1.01	320	1.3	7435	-	4,15
Capreolus capreolus	Terrestrial	PO	23025	1.01	20500	45.0	200	760	5,6,9
Cebus capucinus	Arboreal	PR	3626	1.05	-	-	731	-	15
Cercocebus atys	Arboreal	PR	10553	1.06	-	-	77	_	15
Cercopithecus diana	Arboreal	PO	8700	1.03	-	-	60	900	11,16,17
Cercopithecus mona	Arboreal	PO	4566	1.06	-	-	334	-	15
Cercopithecus nictitans	Arboreal	PO	0633 280750	1.05	-	-	220	629	4,18
Cervus elaphus canadensis	Terrestrial	PO	88000	1.02		-	40	222	3,19
Cervus elaphus scoticus	Terrestrial	PO	125000	1.04	122000	218.0	112	230	4 5 21
Cervus nippon	Terrestrial	РО	39450	1.04	-	-	933^	-	5,22
Colobus guereza	Arboreal	РО	13390	1.04	10400	3.0	18^	717	11,23,24
Cryptomys hottentotus	Terrestrial	PA	90	1.06	104	0.6	2050^	-	8,9,25
Cryptomys mechowi	Terrestrial	PA	350	1.07	-	-	500	-	8,25
Dama dama	Terrestrial	PO	59166	1.02	63700	133.0	34	280	3-5,26
Elephas maximus	Terrestrial	PO	4650000	1.03	4545000	4000	60	-	4,8,27
Eptesicus fuscus	Arboreal	PO	16	0.95	-	-	16800^	-	5,28
Erythrocebus patas	Terrestrial	PO	9740	1.08	10000	7.2	150	-	15
Eulemur fulvus	Arboreal	VA PO	1970.00	0.99	2500	/.8	205	2532	4,9,11,29
Eulemur macaco Fulemur rubriventer	Arboreal	MO	2370.00	1.00	2512	10.7	<u> </u>	1545	11,25,29
<i>Eulemar rubrivemer</i> <i>Felis margarita</i>	Terrestrial	PO	3000	1.00	-	-	360	-	4 32
Felis nigripes	Terrestrial	PO	1800	1.04	1983	2.0	310	-	2.4.32
Felis silvestris lybica	Terrestrial	РО	5000	1.02	4528	2.6	362	-	2,4,32
Felis silvestris ornata	Terrestrial	PO	3900	1.05	_	-	260	_	32
Felis silvestris silvestris	Terrestrial	PO	7100	1.05	4600	1.4	300	-	2,4,32
Gazella subgutturosa	Terrestrial	PO	25500	1.04	-	-	45	382	5,33
Gorilla gorilla	Terrestrial	PO	154000	1.07	168250	26.7	166	-	4,23,34
Heterocephalus glaber	Terrestrial	PA	30	1.00	-	-	3000^	-	8,25
Homo sapiens	Terrestrial	VA MO	74960	1.02	65650	40.5	114	1011	4,35,36
Hylobates lar Hypsignathus monstrosus	Arboreal	PO	3900	1.01	354	<u> </u>	290	-	4,11,15,57
Indri indri	Arboreal	MO	5830	0.98	-	0.2	653		4,0,30
Loxodonta africana	Terrestrial	PO	5374000	1.05	4365000	4530	14	51	4.8.40.41
Macaca mulatta	Terrestrial	PR	7506	1.03	9200	46.2	160	1421	4,8,42,43
Marmota flaviventris	Terrestrial	PO	5067	1.05	_	-	1275	_	8,44
Meles meles	Terrestrial	PR	10120	1.02	14515	14.4	14	-	4,5,45
Mesocricetus auratus	Terrestrial	PO	104	1.06	108	3.2	34500	-	4,8,46
Microcebus murinus	Arboreal	PO	78	1.01	70	2.5	23700	-	8,23,47
Microcebus rufus	Arboreal	PO	43	1.01	-	-	21800^	-	11,48
Mus musculus	Terrestrial	PU PO	15	0.99	15	U.I 76.0	02775	-	4,5,49
Ouocouleus virginianus	Terrestrial	PO PO	202000	1.03	/ 1000	0.0	209	- 360	3-3 8 50
Pan troolodytes	Terrestrial	PR	56668	1.02	45000	139.0	718	1122	8 23 51 52
Panthera leo	Terrestrial	PO	189000	1.02	188000	55.0	195	308	4.5.53
Panthera tigris	Terrestrial	PR	182000	1.04	-	-	29		5,54
Papio hamadryas	Terrestrial	PO	29800	1.06	26400	93.5	52	998	4,8,55
Papio ursinus	Terrestrial	PO	31050	1.07	_	-	53	738	5,56
Phascolarctos cinereus	Arboreal	PO	7700	1.03	11100	15.0	27	354	4,5,57
Phodopus sungorus	Terrestrial	PO	37	1.05	42	0.9	57600	-	4,8,58
Pongo pygmaeus	Arboreal	PO	74700	1.06	74640	35.30	412^	-	4,5,59
Procapra gutturosa	Terrestrial	PO	31500	1.03	-	-	500	564	4,60
Procavia capensis	Terrestrial	PO	2738	1.00	-	-	1280	2766	5,61
Rangifer tarandus	1 errestrial	PO	172000	1.04	145000	132.0	55	-	3-5
Kattus rattus	Terrestrial	PO PO	133	1.01	109		48916	- 407	4,02,03
Suigu iuiuricu Spalar ehrenherai	Terrestrial	MO	170	1.03		_	550		8 25
Suricata suricatta	Terrestrial	MO	760	1.03	731	1.3	566	2394	4.9.65.66
Theropithecus gelada	Terrestrial	PO	20500	1.51	20400	17.10	111	1051#	4,5,67
Tupaia belangeri	Terrestrial	MO	229	1.04	_	-	7200^	-	68.69
Varecia variegata	Arboreal	VA	3630	1.03	4750	17.17	222	1464	4,11,29,70

PO = Polygynous, MO = Monogamous, PR = Promiscuous, PA = Polyandrous, VA = Variable.

Data on species habitat were taken from the Encyclopedia of Life website (http://eol.org/) Data on species mating system were taken from the Animal Diversity Website (http://animaldiversity.org/) * Testes mass in grams was calculated by multiplying the volume in mm3 by 1.02². ^ F0 calculated as the mid point between reported minimum and maximum values. # Formant frequency values measured from a published spectrogram using a clear ruler to extrapolate from the axes.

Supplementary References

- 1 Charlton, B., Zhang, Z. & Snyder, R. Vocal cues to identity and relatedness in giant pandas (*Ailuropoda melanoleuca*). J. Acoust. Soc. Am. **126**, 2721-2732 (2009).
- 2 Iossa, G., Soulsbury, C. D., Baker, P. J. & Harris, S. Sperm competition and the evolution of testes size in terrestrial mammalian carnivores. *Funct. Ecology* 22, 655-662 (2008).
- 3 Cap, H., Deleporte, P., Joachim, J. & Reby, D. Male vocal behavior and phylogeny in deer. *Cladistics* 24, 917-931 (2008).
- 4 Morrow, E. H. & Fricke, C. Sexual selection and the risk of extinction in mammals. *Proc. Biol. Sci.* 271, 2395-2401 (2004).
- 5 Silva, M. & Downing, J. A. *CRC handbook of mammalian body masses*. (CRC press, 1995).
- 6 Reby, D. & Cargnelutti, B. "Des Voix Dans la Fore[^]t. Un Guide Sonore des Cervides d'Europe." Sittelle, Mens. (1999).
- 7 Frommolt, K. H., Goltsman, M. E. & MacDonald, D. W. Barking foxes, Alopex lagopus: field experiments in individual recognition in a territorial mammal. Anim. Behav. 65, 509-518 (2003).
- 8 Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90 2648-2648 (2009).
- 9 Soulsbury, C. D. Genetic patterns of paternity and testes size in mammals. *PLoS ONE* 5, e9581-9587 (2010).
- 10 Dunn, J. C. et al. Evolutionary Trade-Off between Vocal Tract and Testes Dimensions in Howler Monkeys. Curr Biol 25, 2839-2844 (2015).
- 11 Smith, R. J. & Junkers, W. L. Body mass in comparative primatology. *Journal of Human Evolution* **32**, 523-559 (1997).
- 12 Helbig, L., Woodbury, M. R., Haigh, J. C., Collins, J. & Barth, A. D. The seasonal fertility of North American bison (Bison bison) bulls. Anim. Reprod. Sci. 97, 265-277.
- 13 Wyman, M. T. (Unpublished).
- 14 Wyman, M. T. *et al.* Acoustic cues to size and quality in the vocalizations of male North American bison, *Bison bison. Anim. Behav.* 84, 1381-1391 (2012).
- 15 Puts, D. A. et al. Sexual selection on male vocal fundamental frequency in humans and other anthropoids. Proc. Biol. Sci. 283 (2016).
- 16 Riede, T. & Zuberbühler, K. Pulse register phonation in Diana monkey alarm calls. J. Acoust. Soc. Am. 113, 2919-2926 (2003).
- 17 Riede, T., Bronson, E., Hatzikirou, H. & Zuberbuhler, K. Vocal production mechanisms in a non-human primate: morphological data and a model. J. Hum. Evol. 48, 85-96 (2005).
- 18 Price, T., Arnold, K., Zuberbühler, K. & Semple, S. Pyow but not hack calls of the male putty-nosed monkey (*Cercopithcus nictitans*) convey information about caller identity. *Behaviour* 146, 871-888 (2009).
- 19 Reby, D. et al. Evidence of biphonation and source-filter interactions in the bugles of male North American elk (*Cervus canadensis*). J. Exp. Biol. In press (2016).
- 20 Kidjo, N., Cargnelutti, B., Charlton, B. D., Wilson, C. & Reby, D. Vocal behaviour in the endangered Corsican deer, description and phylogenetic implications. *Bioacoustics* 18, 159-181 (2008).
- 21 Reby, D. & McComb, K. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. *Anim. Behav.* **65**, 519-530 (2003).
- 22 Minami, M. & Kawamichi, T. Vocal repertoires and classification of the sika deer *Cervus nippon*. J. Mamm. Soc. Japan 17, 71-94 (1992).
- Harcourt, A. H., Purvis, A. & Liles, L. Sperm competition: mating system, not breeding season, affects testes size of primates. *Funct. Ecol.* 9, 468-476 (1995).
- Harris, T. R., Fitch, W. T., Goldstein, L. M. & Fashing, P. J. Black and white colobus monkey (*Colobus guereza*) roars as a source of both honest and exaggerated information about body mass. *Ethology* **112**, 911-920 (2006).
- 25 Credner, S., Burda, H. & Ludescher, F. Acoustic communication underground: vocalization characteristics in subterranean social mole-rats (*Cryptomys* sp., Bathyergidae). J Comp. Physiol. A: Neuroethology 180, 245-255 (1997).
- 26 McElligott, A. G., Birrer, M. & Vannoni, E. Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. J. Zool. 270, 340-345 (2006).
- 27 De Silva, S. Acoustic communication in the Asian elephant, *Elephas maximus maximus*. *Behaviour* **147**, 825-852 (2010).
- 28 Gadziola, M. A., Grimsley, J. M. S., Faure, P. A. & Wenstrup, J. J. Social vocalizations of big brown bats vary with behavioral context. PLoS ONE 7, e44550-44516 (2012).
- 29 Gamba, M. (Unpublished).
- 30 Kappeler, P. M. Intrasexual selection and testis size in strepsirhine primates. *Behav. Ecol.* 8, 10-19 (1997).
- 31 Gamba, M., Colombo, C. & Giacoma, C. Acoustic cues to caller identity in lemurs: a case study. J. Ethol. 30, 191-196 (2012).
- 32 Peters, G., Baum, L., Peters, M. & Tonkin-Leyhausen, B. Spectral characteristics of intense mew calls in cat species of the genus Felis (*Mammalia: Carnivora: Felidae*). J. Ethol. 27, 221-237 (2009).
- 33 Frey, R., Volodin, I., Volodina, E., Soldatova, N. V. & Juldaschev, E. T. Descended and mobile larynx, vocal tract elongation and rutting roars in male goitred gazelles (Gazella subgutturosa Güldenstaedt, 1780). J. Anat. 218, 566-585 (2011).
- 34 Salmi, R. & Doran-Sheehy, D. M. The function of loud calls (Hoot Series) in wild western gorillas (*Gorilla gorilla*). Am. J. Phys. Anthropol. 155, 379-391 (2014).
- 35 Gage, M. J. G. & Freckleton, R. P. Relative testis size and sperm morphometry across mammals: no evidence for an association between sperm competition and sperm length. Proc. Biol. Sci. 270, 625-632 (2003).
- 36 Pisanski, K. *et al.* Voice parameters predict sex-specific body morphology in men and women. *Anim. Behav.* **112**, 13-22 (2016).
- 37 Barelli, C., Mundry, R., Heistermann, M. & Hammerschmidt, K. Cues to androgens and quality in male gibbon songs. *PLoS ONE* **8**, e82748 (2013).
- 38 Bradbury, J. Lek mating behavior in the hammer-headed bat. Zeits. Tierpsychol. 45, 225-255 (1977).
- 39 Giacoma, C., Sorrentino, V., Rabarivola, C. & Gamba, M. Sex differences in the song of *Indri indri. Int. J. Primatol.* **31**, 539-551 (2010).
- 40 Poole, J. H., Payne, K., Langbauer, W. R. & Moss, C. J. The social contexts of some very low frequency calls of African elephants. *Behav. Ecol. Sociobiol.* 22, 385-392 (1988).
- 41 Stoeger, A. S. & Baotic, A. Information content and acoustic structure of male African elephant social rumbles. *Sci. Rep.* 6, 1-8 (2016).
- 42 Fitch, W. T. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J. Acoust. Soc. Am. 102, 1213-1222 (1997).
- 43 Rendall, D., Owren, M. J. & Rodman, P. S. The role of vocal tract filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. J. Acoust. Soc. Am. 103, 602-614 (1998).
- 44 Blumstein, D. & Munos, O. Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. *Anim. Behav.* (2005).
- 45 Wong, J., Stewart, P. D. & Macdonald, D. W. Vocal repertoire in the European badger (*Meles meles*): Structure, context, and function. J. Mammal. 80, 570-588 (1999).
- 46 Floody, O. R. & Pfaff, D. W. Communication among hamsters by high-frequency acoustic signals: I. Physical characteristics of hamster calls. J. Comp. Physiol. Psychol. 91, 794-806 (1977).
- 47 Zimmerman, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (*Microcebus murinus*) and sources of its variation. *Ethology* 93, 211-224 (1993).
- 48 Zimmermann, E., Vorobieva, E., Wrogemann, D. & Hafen, T. Use of vocal fingerprinting for specific discrimination of gray (*Microcebus murinus*) and rufous mouse lemurs (*Microcebus rufus*). Int. J. Primatol. 21, 837-852 (2000).
- 49 Gourbal, B. E. F., Barthelemy, M., Petit, G. & Gabrion, C. Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. *Naturwissenschaften* 91, 1-5 (2004).
- 50 Frey, R., Gebler, A. & Fritsch, G. Arctic roars laryngeal anatomy and vocalization of the muskox (*Ovibos moschatus Zimmermann*, 1780, *Bovidae*). J. Zool. 268, 433-448 (2006).
- 51 Riede, T., Arcadi, A. C. & Owren, M. J. Nonlinear acoustics in the pant hoots of common chimpanzees (*Pan troglodytes*): Vocalizing at the edge. J. Acoust. Soc. Am. 121, 1758-1767 (2007).
- 52 Slocombe, K. E. & Zuberbuhler, K. Functionally referential communication in a chimpanzee. *Curr. Biol.* **15**, 1779-1784 (2005).
- 53 Pfefferle, D., West, P. M., Grinnell, J., Packer, C. & Fischer, J. Do acoustic features of lion, *Panthera leo*, roars reflect sex and male condition? J. Acoust. Soc. Am. 121, 3947-3953 (2007).
- 54 Titze, I. R. *et al.* Vocal power and pressure-flow relationships in excised tiger larynges. *J. Exp. Biol.* **213**, 3866-3873 (2010).
- 55 Pfefferle, D. & Fischer, J. Sounds and size: identification of acoustic variables that reflect body size in hamadryas baboons, *Papio hamadryas*. *Anim. Behav.* **72**, 43-51 (2006).
- 56 Rendall, D., Owren, M., Weerts, E. & Hienz, R. Sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons and their perceptual discrimination by baboon listeners. J. Acoust. Soc. Am. (2003).
- 57 Charlton, B. et al. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait. J. Exp. Biol. 214, 3414-3422, doi:10.1242/jeb.061358 (2011).
- 58 Keesom, S. M., Rendon, N. M., Demas, G. E. & Hurley, L. M. Vocal behaviour during aggressive encounters between Siberian hamsters, *Phodopus sungorus*. Anim. Behav. **102**, 85-93 (2015).
- 59 Spillmann, B. et al. Acoustic properties of long calls given by flanged male orang-utans (Pongo pygmaeus wurmbii) reflect both individual identity and context. Ethology 116, 385-395 (2010).
- 60 Frey, R. & Gebler, A. The highly specialized vocal tract of the male Mongolian gazelle (*Procapra gutturosa* Pallas, 1777 *Mammalia*, *Bovidae*). J. Anat. 203, 451-471 (2003).
- 61 Koren, L. & Geffen, E. Complex call in male rock hyrax (*Procavia capensis*): a multi-information distributing channel. *Behav. Ecol. Sociobiol.* **63**, 581-590 (2009).
- 62 Haney, M. & Miczek, K. A. Ultrasounds during agonistic interactions between female rats (*Rattus norvegicus*). J. Comp. Psychol. **107**, 373-379 (1993).
- 63 White, N. R., Cagiano, R., Moises, A. U. & Barfield, R. J. Changes in mating vocalizations over the ejaculatory series in rats (*Rattus norvegicus*). J. Comp. Psychol. 104, 255-262 (1990).
- 64 Frey, R., Volodin, I. & Volodina, E. A nose that roars: anatomical specializations and behavioural features of rutting male saiga. J. Anat. 211, 717-736 (2007).
- Townsend, S. W., Zöttl, M. & Manser, M. B. All clear? Meerkats attend to contextual information in close calls to coordinate vigilance. *Behav. Ecol. Sociobiol.* **65**, 1927-1934 (2011).
- Townsend, S., Charlton, B. & Manser, M. Acoustic cues to identity and predator context in meerkat barks. *Anim. Behav.* 94, 143-149, (2014).
- 67 Bergman, T. J. Speech-like vocalized lip-smacking in geladas. *Curr. Biol.* 23, R268-R269 (2013).
- 68 Schehka, S. & Zimmermann, E. Acoustic features to arousal and identity in disturbance calls of tree shrews (Tupaia belangeri). *Behav. Brain Res.* 203, 223-231 (2009).
- 69 Binz, H. & Zimmermann, E. The vocal repertoire of adult tree shrews (*Tupaia belangeri*). *Behaviour* **109**, 142-162 (1989).
- 70 Pereira, M. E., Seeligson, M. I. & Macedonia, J. The behavioral repertoire of the black-and-white ruffed lemur, *Varecia variegata variegata* (Primates: Lemuridae). *Folia Primatol.* **51**, 1-32 (1988).