
Supplementary Figures

Supplementary Fig 1. Comparison of sub-samples on the first two principal
components of genetic variation. The British sample is plotted with red points. The
sub-samples of the diverse sample with self-declared Indian, Chinese, and Carribean ancestry are
highlighted with different coloured points. The smoothed density of the diverse sample is shown in
blue shading.
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Supplementary Fig 2. The associations of different nutrient quantities with BMI and
diet score. Nutrient quantities were estimated from 24 hour dietary recall. Nutrients were fitted
jointly along with variables from the ‘BMI’ model (Table 2 and Methods). For BMI, the effects are
expressed as the percentage change in BMI per standard deviation of the nutrient, and for the diet
score the effect is the standard deviation change in diet score per standard deviation of the
nutrient. The estimated effects and 95% confidence intervals are plotted for each sample: the
British sample (n=12,747, blue) and the diverse sample (n=4,413, red). If there is no statistically
significant heterogeneity (p > 0.05) between the samples, a combined estimate from a fixed effects
meta-analysis is also plotted (diamonds). A star on the right indicates the p-value below the
Bonferroni corrected significance threshold of 0.05/22.
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Supplementary Fig 3. The associations of different nutrient quantities with frequency
of added salt and cooked vegetable intake.. Nutrients were fitted jointly along with variables
from the ‘BMI’ model (Table 2 and Methods), excluding dietary variables and FTO. The effects are
expressed as the standard deviation change per standard deviation of the nutrient. The estimated
effects and 95% confidence intervals are plotted for each sample: the British sample (n=12,716,
blue) and the diverse sample (n=4,418, red). If there is no statistically significant heterogeneity
(p > 0.05) between the samples, a combined estimate from a fixed effects meta-analysis is also
plotted (diamonds). A star on the right indicates the p-value below the Bonferroni corrected
significance threshold of 0.05/22.



Supplementary Fig 4. Comparison of normality of BMI and log-BMI. Normal
quantile-quantile plots for the residuals of the regression of BMI and log-BMI on the model
variables, excluding interactions with FTO.



Supplementary Tables

Ethnicity Percentage

British 61
Other white background 12
Irish 10
Indian 3.3
Carribean 2.6
Other 2.5
African 1.9
Any other asian background 1.0
Pakistani 1.0
Prefer not to answer 1.0

Supplementary Table 1. Composition of the diverse sample by self-declared ethnicity.
Groups with 1% or greater representation are shown.

FTO FTO (+BMI)
Estimate p-value Estimate p-value

Alcohol score -0.011 4.6e-02 -0.002 0.68
Activity score -0.001 7.6e-01 0.009 0.05

Diet score 0.003 6.2e-01 -0.012 0.03
Frequency of added salt -0.007 2.3e-01 -0.012 0.03

Sleep Squared -0.008 4.8e-01 -0.017 0.03

Supplementary Table 2. The effect of FTO on selected variables. Column 1 gives the
estimated effect of FTO on the variable (expressed as SD change in response per copy of FTO),
and column 2 gives the assocaited p-value. Columns 3 and 4 give the same when also fitting
log-BMI as a covariate. See Methods for analysis details.



	

	

Supplementary	Note	1
	

Control	of	Population	Structure	

	

For	the	British	sample,	we	calculated	principal	components	from	the	sample	determined	to	

be	genetically	British	by	UK	Biobank.	We	LD-pruned	SNPs	using	PLINK	in	a	sliding	window	of	

size	1000	to	ensure	that	no	pair	of	SNPs	within	the	window	had	an	R2	of	more	than	0.1.	We	

filtered	out	SNPs	with	minor	allele	frequency	less	than	0.05,	missingness	greater	than	1%,	

and	Hardy-Weinberg	exact	test	p-value	less	than	10-6.	This	left	~104,000	SNPs	across	the	

genome.	We	used	EIGENSOFT1	with	‘fastmode’2	on	to	calculate	the	top	20	principal	

components.	We	fitted	the	‘Scores’,	‘Activity’,	‘Alcohol’,	and	‘Diet’	models	(Table	2)	using	R3,	

with	the	top	20	principal	components	added.	

For	the	diverse	sample,	we	used	a	mixed	model	to	prevent	confounding	due	to	family	

relatedness	and	population	structure	not	captured	by	principal	components4–7.		We	filtered	

out	SNPs	with	minor	allele	frequency	less	than	0.01,	with	more	than	1%	missing	calls,	and	

Hardy-Weinberg	equilibrium	exact	test	p-value	less	than	10-10.		We	used	a	stronger	threshold	

for	the	Hardy-Weinberg	equilibrium	exact	test	for	the	diverse	sample	because,	while	we	

wanted	problematic	SNPs	with	gross	violations	of	equilibrium	to	be	removed,	Hardy	

Weinberg	equilibrium	is	not	expected	to	hold	exactly	in	ethnically	mixed	samples.	To	fit	the	

models	in	the	diverse	sample,	we	used	a	mixed	model	with	two	random	effects:	one	from	

the	SNPs	on	chromosomes	other	than	16,	and	one	from	the	SNPs	on	chromosome	16	more	

than	2cM	away	from	rs1421085,	where	genetic	distance	was	determined	using	the	genetic	

map	provided	by	UK	Biobank.	We	calculated	genetic	relatedness	matrices	using	GCTA8,	and	

fitted	the	models	using	the	Average	Information	algorithm	in	GCTA.	These	correspond	to	the	

maximum	likelihood	estimates	of	the	fixed	effects	given	the	variance	components	that	

maximize	the	restricted	likelihood.	

Efficacy	of	Population	Structure	control	

If	population	structure	has	been	controlled	effectively	and	there	are	no	true	causal	loci,	then	

the	association	test	statistics	at	independent	SNPs	across	the	genome	should	be	sampled	

from	the	null	distribution.	A	common	measure	of	effectiveness	of	control	of	population	

structure	is	the	inflation	factor9:	this	estimates	the	ratio	of	the	median	test	statistic	across	

the	genotyped	variants	to	the	median	that	would	be	expected	from	the	null	distribution	of	



	

	

test	statistics	9.	A	weakness	of	this	measure	is	that	if	a	trait	has	many	causal	variants,	which	

BMI	is	known	to	have10,11,	then	the	inflation	factor	should	be	greater	than	1	even	if	

population	structure	has	been	controlled	for	perfectly12.	In	the	following,	we	calculate	

inflation	factors	for	SNPs	across	the	genome	to	measure	how	effective	our	control	of	

population	structure	is	in	both	samples.		

To	test	whether	a	mixed	model	could	control	for	the	kind	of	structure	in	the	diverse	sample,	

we	used	BOLT-LMM13,	with	the	LMM-Inf	setting,	to	calculate	association	statistics	between	

log-BMI	and	the	SNPs	on	the	chromosomes	other	than	16,	which	contains	the	FTO	locus.	We	

used	the	‘BMI’	model	(Table	2)	variables	as	fixed	effects,	excluding	any	interactions	with	

FTO.	We	used	BOLT-LMM	instead	of	GCTA	because	of	the	greater	computational	efficiency.	

(Note	that	for	this	analysis	we	undertake	association	analyses	at	SNPs	genome-wide,	

whereas	our	primary	analyses	are	focused	on	a	single	FTO	SNP.)	The	results	should	be	

comparable	because	BOLT-LMM	with	the	LMM-inf	setting	fits	the	same	infinitesimal	mixed	

model	as	GCTA.	The	inflation	factor	over	the	tested	chromosomes	was	1.07,	which	is	lower	

than	1.09	reported	for	a	BMI	meta-analysis12.	

We	measured	how	effective	adjusting	for	the	top	20	principal	components	in	the	British	

sample	was	at	controlling	population	structure	by	computing	association	statistics	for	a	

sample	of	SNPs	across	the	genome.	To	ensure	the	association	test	statistics	were	

comparable	to	our	FTO	analysis,	we	used	the	same	code	and	model	within	R	as	for	the	

primary	analysis.	However,	this	imposed	computational	constraints,	preventing	a	genome	

wide	analysis.	We	therefore	selected	100	SNPs	from	each	chromosome,	leaving	a	gap	of	100	

genotyped	SNPs	between	each	selected	SNP.	We	kept	those	with	minor	allele	frequency	

>5%	and	missingness	<1%,	leaving	872	SNPs.	We	used	the	‘Scores’	model	(Table	2)	with	all	of	

the	FTO	variables	removed	and	replaced	with	the	test	SNP.	The	inflation	factor	was	1.12.		

While	the	inflation	factor	is	higher	than	in	the	diverse	sample,	it	is	close	to	the	inflation	

factor	of	1.09	reported	for	a	BMI	meta-analysis12.		
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