Supplementary material

1 Fast OLS for generally labeled trees

In what follows we show that the branch length formula, eqn. (1) (see also eqn. (10) in the main paper),
that was derived by Bryant (1997) for leaf-labeled trees is also applicable for generally labeled trees. We
follow the same terminology that was defined in the main paper.

Consider the internal edge eg shown in Fig. 1 with adjacent edges e1, ... €k, €k41 ... €m. € is incident to
the vertices o and 3. The respective sizes of the sides of the split defined by ey are n, and ng.

For each edge e;, define P; = ZIE A, weB; Poy where A; and B; are the sides of the split defined by edge
e;. Here pg, denotes the length of the path from  to y when branch lengths are determined by OLS. It
turns out that P; = §7 d.

For each edge e;, i # 0, let C; be the side of the split defined by e; that does not contain o and B. n; is
the cardinality of C;. Define

Q: = ercipar; if1<:<k
' Zzecipﬁzm fk+1<i<m

If both « and 8 are not labeled (Case 1 in Fig. 1) it can be shown that (Bryant, 1997)
P=(nl—-2N)Q+ NUQ +byNv

where N is the m x m diagonal matrix with (ni,ne,...,n,,) on the diagonal, I is the identity matrix,
Q= (Q1,Q2,...,Qun)T, U is the m x m matrix of ones, v is the vector with ng in positions 1 to k followed
by ne in positions k+1 to m, P = (Py, Py, ..., P,)T, n is the total number of labeled vertices, and by is the
branch length of the edge eq
Similarly for the internal edge ey,
Py =v"Q + nangby

Case 1 Case 2 Case 3

Figure 1: The three cases for the internal edge eg. Case 1: Both a and 8 are not labeled. Case 2: Only « is
labeled. Case 3: Both o and S are labeled. The triangles represent subtrees.



Letting X = (nN~! — 21 + U) and substituting Q gives the following branch length estimate.

Py —oTX-IN-1P
neng —vT X1y

by =

For cases where only a and both o and g are labeled, respectively, the derivation of the equations are similar
to that described in Bryant (1997) and is described below.

Case 2: « is labeled and j is not labeled

For edges e; incident to o, i = 1...k, we have
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k m
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For edges e; incident to 8, i =k + 1...m, we have

Pi:Z mey

z€A; yEB;
m
= 2 2 D Pt D P
j=1,j#ixeC; yeC; zeC;
k m
S 3D I IR SHD Db SIRTHES prEs
J=12€C; yeC; j=k+1,j#i z€C; yeC; zeC;
k m
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In matrix form,
P=(nl-2N)Q+ NUQ +byNuv
& NN~ —2I+U)Q =P —byNv
Setting X = (nN~! — 21 + U) and rearranging, we get
Q=X"'N"T'P—bX v



For the internal edge eg we have
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After substituting Q and rearranging we get,

Py—ovTX IN-'P
by = 0— 1 L (1)

nong —vT X1y

Case 3: Both a and f are labeled

For edges e; incident to o, i = 1...k, we have
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By symmetry, for edges e; incident to 3, i =k + 1...m, we have,
Pi=(n—2n)Qi+ni Yy Q; + ninabo
j=1

In matrix form,
P=(nl—-2N)Q+ NUQ +byNuv

For the internal edge eq we have



Case 1 Case 2

Figure 2: The two cases for the terminal edge eg. « is labeled in case 1 and not labeled in case 2. The
triangles represent subtrees.
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After substituting Q and rearranging we get,

By —u"X"IN"'P
 nang —vTX 1y

Consider the terminal edge ey shown in Fig. 2 with adjacent edges ey, es...en,. € is incident to the
vertices a and . The respective sizes of the sides of the split defined by ey are n, and ng. Since eg is
a terminal edge the leaf 3 is labeled. There are two cases to consider depending on if « is labeled or not
labeled.

If « is not labeled (Case 1 in Fig. 2), the branch length formula given by Bryant (1997) is

Ry —u'X"IN"'P
" nang —vTX 1y

where ny = (n—1), ng =1 and k = m. If « is labeled (Case 2 in Fig. 2), the branch length formula can be
derived as follows.



For edges e; incident to o we have,
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In matrix form,

P=(nl-2N)Q+ NUQ +byNuv
For the terminal edge eg we have,

Po=Y"> ppe+bo
€Ci

=1z
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where n, = (n — 1), ng =1 and k = m.
After substituting Q and rearranging we get,
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2 Molecular clock rate inferred by SA
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Figure 3: Rate of the strict molecular clock that is estimated by SA. The true rate of the strict molecular
clock is 1.0 subs./site/time in all simulation scenarios.

3 Comparison of various FJ-based methods

For computing cross-validation error the original sequence alignment with L columns was partitioned into
K validation alignments by randomly sampling L/K columns without replacement. For each validation
alignment, the corresponding training alignment was constructed using the complimentary set of L — L/K
alignment columns. This procedure was repeated R times, giving RK training and validation alignments
in total. ML distances were computed for all training and validation alignments. For a fixed value of €, FJ
trees were constructed for each training distance matrix. We set R to 10 and tried two values for K, i.e.,
3 and 5. Test error was computed as the residual sum of squares between the fitted distances (path length
on the tree) and the corresponding distances computed from the validation alignment. We then found the e



that minimized expected test error as this would yield the most generalizable model.
L2
arg min (dren(i,d)  —  dve(ig))
2.0 [ren (1 (i
dlstance in fitted tree  distance in validation set

where T'(e, k) is the tree constructed at threshold e using distances from the k' training alignment and V' (k)
is the k*® validation alignment.

Precision/Recall

T T 1 T T T 1
balanced random(d) unbalanced leaf/latent labeled/latent anyl/latent(d) latent/latent

c Type of tree D Type of contracted edge

ikl ML

o»
T T T T 1 T T T T 1

0.5 0.37 0.25(d) 0.12 0 0.001 0.004 0.016(d) 0.064 0.256

E Fraction of latent vertices E Average branch length (subs./site)

A TE R

Precision/Recall

Precision/Recall

T T T 1 T T T T 1
20 40 80 160(d) 320 250 500 1000(d) 2000 4000
Number of labeled vertices (taxa) Sequence length (nt)

Figure 4: A comparison of various FJ-based methods. FJ-BIC is the method that is presented in the main
paper. FJ2-BIC checks if siblings have a parent using the criterion shown in eqn. (4) of the main paper.
FJ-AIC uses AIC for model selection. FJ-3CV and FJ-5CV performs model selection using 3-fold CV and
5-fold CV respectively.
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