
Supplementary material

1 Fast OLS for generally labeled trees

In what follows we show that the branch length formula, eqn. (1) (see also eqn. (10) in the main paper),
that was derived by Bryant (1997) for leaf-labeled trees is also applicable for generally labeled trees. We
follow the same terminology that was defined in the main paper.

Consider the internal edge e0 shown in Fig. 1 with adjacent edges e1, . . . ek, ek+1 . . . em. e0 is incident to
the vertices α and β. The respective sizes of the sides of the split defined by e0 are nα and nβ .

For each edge ei, define Pi =
∑
x∈Ai,y∈Bi

pxy where Ai and Bi are the sides of the split defined by edge
ei. Here pxy denotes the length of the path from x to y when branch lengths are determined by OLS. It
turns out that Pi = δTi d.

For each edge ei, i 6= 0, let Ci be the side of the split defined by ei that does not contain α and β. ni is
the cardinality of Ci. Define

Qi =

{∑
x∈Ci

pαx, if 1 ≤ i ≤ k∑
x∈Ci

pβx, if k + 1 ≤ i ≤ m

If both α and β are not labeled (Case 1 in Fig. 1) it can be shown that (Bryant, 1997)

P = (nI − 2N)Q+NUQ+ b0Nv

where N is the m × m diagonal matrix with (n1, n2, . . . , nm) on the diagonal, I is the identity matrix,
Q = (Q1, Q2, . . . , Qm)T , U is the m×m matrix of ones, v is the vector with nβ in positions 1 to k followed

by nα in positions k+ 1 to m, P = (P1, P2, . . . , Pm)T , n is the total number of labeled vertices, and b0 is the
branch length of the edge e0

Similarly for the internal edge e0,
P0 = vTQ+ nαnβb0
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Figure 1: The three cases for the internal edge e0. Case 1: Both α and β are not labeled. Case 2: Only α is
labeled. Case 3: Both α and β are labeled. The triangles represent subtrees.
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Letting X = (nN−1 − 2I + U) and substituting Q gives the following branch length estimate.

b0 =
P0 − vTX−1N−1P

nαnβ − vTX−1v

For cases where only α and both α and β are labeled, respectively, the derivation of the equations are similar
to that described in Bryant (1997) and is described below.

Case 2: α is labeled and β is not labeled

For edges ei incident to α, i = 1 . . . k, we have

Pi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

pαx

=

k∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pαx + pαy) +

m∑
j=k+1

∑
x∈Ci

∑
y∈Cj

(pαx + b0 + pβy) +
∑
x∈Ci

pαx

=

k∑
j=1,j 6=i

[njQi + niQj ] +

m∑
j=k+1

[njQi + niQj + ninjb0] +Qi

= (n− ni − 1)Qi + ni(Q1 + . . .+Qi−1 +Qi+1 + . . .+Qm) + ninβb0 +Qi

= (n− 2ni)Qi + ni

m∑
j=1

Qj + ninβb0

For edges ei incident to β, i = k + 1 . . .m, we have

Pi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

pαx

=

k∑
j=1

∑
x∈Ci

∑
y∈Cj

(pβx + b0 + pαy) +

m∑
j=k+1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pβx + pβy) +
∑
x∈Ci

(pβx + b0)

= (

k∑
j=1

njQi + niQj + ninjb0) + (

m∑
j=k+1,j 6=i

njQi + niQj) +Qi + nib0

= (n− ni − 1)Qi + ni(Q1 + . . .+Qi−1 +Qi+1 + . . .+Qm) + ni(nα − 1)b0 +Qi + nib0

= (n− 2ni)Qi + ni

m∑
j=1

Qj + ninαb0

In matrix form,

P = (nI − 2N)Q+NUQ+ b0Nv

⇔ N(nN−1 − 2I + U)Q = P − b0Nv

Setting X = (nN−1 − 2I + U) and rearranging, we get

Q = X−1N−1P − b0X−1v
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For the internal edge e0 we have

P0 =

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pxy +

m∑
j=k+1

∑
x∈Cj

(b0 + pβx)

= (

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pαx + b0 + pβy) + nβb0 +

m∑
j=k+1

Qj

= (

k∑
i=1

m∑
j=k+1

njQi + ninjb0 + niQj) + nβb0 +

m∑
j=k+1

Qj

=

k∑
i=1

nβQi +

m∑
j=k+1

(nα − 1)Qj + (nα − 1)nβb0 + nβb0 +

m∑
j=k+1

Qj

= vTQ+ nαnβb0

After substituting Q and rearranging we get,

b0 =
P0 − vTX−1N−1P

nαnβ − vTX−1v
(1)

Case 3: Both α and β are labeled

For edges ei incident to α, i = 1 . . . k, we have

Pi =
∑
x∈Ai

∑
y∈Bi

pxy

=

 m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy

 +
∑
x∈Ci

pαx +
∑
x∈Ci

pβx

=

 k∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pαx + pαy

 +

 m∑
j=k+1

∑
x∈Ci

∑
y∈Cj

pαx + b0 + pβy

 + 2
∑
x∈Ci

pαx + nib0

=

 k∑
j=1,j 6=i

njQi + niQj

 +

 m∑
j=k+1

njQi + niQj + ninjb0

 + 2Qi + nib0

= (n− ni − 2)Qi + ni(Q1 + . . .+Qi−1 +Qi+1 + . . .+Qm) + nib0(1 +

m∑
j=k+1

nj) + 2Qi

= (n− 2ni)Qi + ni

m∑
j=1

Qj + ninβb0

By symmetry, for edges ei incident to β, i = k + 1 . . .m, we have,

Pi = (n− 2ni)Qi + ni

m∑
j=1

Qj + ninαb0

In matrix form,
P = (nI − 2N)Q+NUQ+ b0Nv

For the internal edge e0 we have
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Figure 2: The two cases for the terminal edge e0. α is labeled in case 1 and not labeled in case 2. The
triangles represent subtrees.

P0 =

k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pxy +

 k∑
j=1

∑
x∈Cj

b0 + pαx

 +

 m∑
j=k+1

∑
x∈Cj

b0 + pβx

 + b0

=

 k∑
i=1

m∑
j=k+1

∑
x∈Ci,y∈Cj

pαx + b0 + pβy

 + (nα + nβ − 1)b0 +

m∑
j=1

Qj

=

 k∑
i=1

m∑
j=k+1

njQi + ninjb0 + niQj

 + (nα + nβ − 1)b0 +

m∑
j=1

Qj

= (nβ − 1)

k∑
i=1

Qi + (nα − 1)

m∑
j=k+1

Qj + (nα − 1)(nβ − 1)b0 + (nα + nβ − 1)b0 +

m∑
j=1

Qj

= nβ

k∑
i=1

Qi + nα

m∑
i=k+1

Qi + nαnβb0

= vTQ+ nαnβb0

After substituting Q and rearranging we get,

b0 =
P0 − vTX−1N−1P

nαnβ − vTX−1v

Consider the terminal edge e0 shown in Fig. 2 with adjacent edges e1, e2 . . . em. e0 is incident to the
vertices α and β. The respective sizes of the sides of the split defined by e0 are nα and nβ . Since e0 is
a terminal edge the leaf β is labeled. There are two cases to consider depending on if α is labeled or not
labeled.

If α is not labeled (Case 1 in Fig. 2), the branch length formula given by Bryant (1997) is

b0 =
P0 − vTX−1N−1P

nαnβ − vTX−1v

where nα = (n− 1), nβ = 1 and k = m. If α is labeled (Case 2 in Fig. 2), the branch length formula can be
derived as follows.
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For edges ei incident to α we have,

Pi =
∑
x∈Ai

∑
y∈Bi

pxy

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

pxy +
∑
x∈Ci

(pαx + pβx)

=

m∑
j=1,j 6=i

∑
x∈Ci

∑
y∈Cj

(pαx + pαy) +
∑
x∈Ci

(2pαx + b0)

=

m∑
j=1,j 6=i

[njQi + niQj ] + 2Qi + nib0

= (n− ni − 2)Qi + ni

m∑
j=1,j 6=i

Qj + 2Qi + nib0

= (n− 2ni)Qi + ni

m∑
j=1

Qj + nib0

In matrix form,
P = (nI − 2N)Q+NUQ+ b0Nv

For the terminal edge e0 we have,

P0 =

m∑
i=1

∑
x∈Ci

pβx + b0

= (

m∑
i=1

∑
x∈Ci

pαx + b0) + b0

=

m∑
i=1

Qi + (n− 1)b0

= vTQ+ nαnβb0

where nα = (n− 1), nβ = 1 and k = m.
After substituting Q and rearranging we get,

b0 =
P0 − vTX−1N−1P

nαnβ − vTX−1v
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2 Molecular clock rate inferred by SA
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Figure 3: Rate of the strict molecular clock that is estimated by SA. The true rate of the strict molecular
clock is 1.0 subs./site/time in all simulation scenarios.

3 Comparison of various FJ-based methods

For computing cross-validation error the original sequence alignment with L columns was partitioned into
K validation alignments by randomly sampling L/K columns without replacement. For each validation
alignment, the corresponding training alignment was constructed using the complimentary set of L − L/K
alignment columns. This procedure was repeated R times, giving RK training and validation alignments
in total. ML distances were computed for all training and validation alignments. For a fixed value of ε, FJ
trees were constructed for each training distance matrix. We set R to 10 and tried two values for K, i.e.,
3 and 5. Test error was computed as the residual sum of squares between the fitted distances (path length
on the tree) and the corresponding distances computed from the validation alignment. We then found the ε
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that minimized expected test error as this would yield the most generalizable model.

arg min
ε

∑
k

∑
i,j

(dT (ε,k)(i, j)︸ ︷︷ ︸
distance in fitted tree

− dV (k)(i, j))
2︸ ︷︷ ︸

distance in validation set

where T (ε, k) is the tree constructed at threshold ε using distances from the kth training alignment and V (k)
is the kth validation alignment.
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Figure 4: A comparison of various FJ-based methods. FJ-BIC is the method that is presented in the main
paper. FJ2-BIC checks if siblings have a parent using the criterion shown in eqn. (4) of the main paper.
FJ-AIC uses AIC for model selection. FJ-3CV and FJ-5CV performs model selection using 3-fold CV and
5-fold CV respectively.
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