
Supplementary Information

In this supplementary information we provide further details of our method (Section 1): we prove
that the distance function we define is a metric; discuss the role of the parameter λ; describe further
properties and extensions of our metric; and explain in more detail MDS projections and how to select
summary trees. We explain the relationship of our method to existing tree comparison methods in the
literature (Section 2). Finally, we provide further results about anole lizards and Ebolavirus, and analysis
of additional datasets of chorus frogs and dengue (Section 3).

1 Supplementary details of the method

1.1 Definition of dλ(Ta, Tb) and proof that it is a metric

Let Tk be the set of all rooted trees on k tips with labels 1, . . . , k. Note that we do not require the trees
to be binary (bifurcating); they may contain polytomies (multifurcations). In common with previous
literature [Harding, 1971, Robinson and Foulds, 1981] we say that trees Ta, Tb ∈ Tk have the same labelled
shape or topology if the set of all tip partitions admitted by internal edges of Ta is identical to that of
Tb, and we write this as Ta ∼= Tb. Equivalently, if we define a tip partition admitted by an internal node
as the tip partition given by removing an internal node and its incident edges, then Ta ∼= Tb if and only
if they have the same set of tip partitions admitted by internal nodes. We say that Ta = Tb if they have
the same topology and each corresponding branch has the same length.

A function d : Tk × Tk → R is a metric if, for all Ta, Tb ∈ Tk,

1. d(Ta, Tb) ≥ 0 (distances are non-negative)

2. d(Ta, Tb) = 0⇔ Ta = Tb (the distance is only 0 if they are the same)

3. d(Ta, Tb) = d(Tb, Ta) (distance is symmetric)

4. for any Tc, d(Ta, Tb) ≤ d(Ta, Tc) + d(Tc, Tb) (the triangle inequality).

For any tree T ∈ Tk let mi,j be the number of edges on the path from the root to the most recent
common ancestor (MRCA) of tips i and j, let Mi,j be the length of this path, and let pi be the length of
the pendant edge to tip i. Then, including all pairs of tips, we have two vectors:

m(T ) = (m1,2,m1,3, . . . ,mk−1,k, 1, . . . , 1︸ ︷︷ ︸
k times

) ,

which captures the tree topology, and

M(T ) = (M1,2,M1,3, . . . ,Mk−1,k, p1, . . . , pk)

which captures the topology and the branch lengths. We form a convex combination of these, parame-
terised with λ ∈ [0, 1], to give

vλ(T ) = (1− λ)m(T ) + λM(T ) .

Theorem 1. The function dλ : Tk × Tk → R given by

dλ(Ta, Tb) = ‖vλ(Ta)− vλ(Tb)‖

is a metric on Tk, where ‖ · ‖ is the Euclidean distance (l2-norm) and λ ∈ [0, 1].

Proof of Theorem 1. Since the Euclidean distance between vectors satisfies three of the necessary con-
ditions for being a metric (non-negative, symmetric and obeying the triangle inequality) it remains to
prove condition 2. Since the vectors are well-defined it is clear that Ta = Tb ⇒ dλ(Ta, Tb) = 0. Thus it
remains to prove that d0(Ta, Tb) = 0⇒ Ta ∼= Tb (i.e. the λ = 0 distance is 0 only when the trees have the
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same topology) and dλ(Ta, Tb) = 0 ⇒ Ta = Tb for all λ ∈ (0, 1] (i.e. for 0 < λ 6 1 the distance is 0 only
when the trees are identical). We will address this in three stages, showing that (1) the tree topology
vector, (2) the branch-length focused vector, and (3) their convex combination each uniquely define a
tree. That is, we show that for Ta, Tb ∈ Tk,

1. m(Ta) = m(Tb)⇒ Ta ∼= Tb,

2. M(Ta) = M(Tb)⇒ Ta = Tb, and

3. for λ ∈ (0, 1), vλ(Ta) = vλ(Tb)⇒ Ta = Tb.

For ease of notation we restrict our attention here to binary trees; it is straightforward to extend these
arguments to trees that are not binary, replacing mention of ‘left’ and ‘right’ leaf sets L and R descending
from an internal node by a list of descendant leaf sets S1, S2, . . . , Sp for a polytomy of p descendant
branches.

1. We show thatm(T ) characterises a tree topology. Suppose that for Ta, Tb ∈ Tk we have d0(Ta, Tb) = 0,
so mi,j(Ta) = mi,j(Tb) for all pairs i, j ∈ {1, . . . , k}. Consider the tip partition created by the root of Ta.
That is, if the root and its two descendant edges were removed, then Ta would be split into two subtrees,
whose tip sets we label L and R. For all leaf pairs (i, j) with i ∈ L and j ∈ R we have mi,j(Ta) = 0, and
therefore mi,j(Tb) = 0. Thus the root of Tb also admits the leaf partition {L,R}.

Similarly, any internal node n in Ta partitions its descendant tips into non-empty sets which we can
call Ln, Rn. Let the number of edges on the path from the root to n in Ta be xn. Notice that for any pair
of leaves in Ta where one leaf is in Ln and the other is in Rn, their MRCA is the internal node n. That is,
for all leaf pairs (i, j) with i ∈ Ln, j ∈ Rn we have mi,j(Ta) = xn. Since m(Ta) = m(Tb) for all (i, j) we
also have mi,j(Tb) = xn for the leaf pairs (i, j) with i ∈ Ln, j ∈ Rn. This means that there must be an
internal node in Tb which also partitions the leaves into the sets Ln, Rn, at an edge of distance xn from
the root. Since this is true for all internal nodes we have Ta ∼= Tb, and d0 is a metric on tree topologies.
Note that the final k fixed entries of m(T ) are redundant for unique characterisation of the topology of
the tree, but are included to allow the convex combination of the topological and branch-length focused
vectors.

2. We show that M(T ) characterises a tree using a similar argument to that of part (1). Suppose
that for Ta, Tb ∈ Tk we have d1(Ta, Tb) = 0, so Mi,j(Ta) = Mi,j(Tb) for all pairs i, j ∈ {1, . . . , k}. Let
the length of the path from the root to internal node n be Xn. Then for all i ∈ Ln, j ∈ Rn we have
Mi,j(Ta) = Xn = Mi,j(Tb), which means that Tb also contains an internal node at distance Xn from
the root which admits the partition {Ln, Rn}. Since this holds for all internal nodes including the root
(where Xn = 0), we have that Ta and Tb have the same topology and internal branch lengths.

The final k elements of M(T ) correspond to the pendant branch lengths. When M(Ta) = M(Tb) we
have that for each i ∈ 1, . . . , k the pendant branch length to tip i has length pi in both Ta and Tb. Thus
Ta and Tb have the same topology and branch lengths, hence Ta = Tb and d1 is a metric.

3. Finally, we need to show that vλ(T ) characterises a tree for λ ∈ (0, 1). Suppose that for Ta, Tb ∈ Tk
and λ ∈ (0, 1) we have dλ(Ta, Tb) = 0, so vλ(Ta) = vλ(Tb).

Each vector has length
(
k
2

)
+ k = k(k+1)

2 . It is clear that for the final k entries, that is for k(k−1)
2 <

i ≤ k(k+1)
2 we have

0 = (1− λ)(1− 1) + λ(Mi(Ta)−Mi(Tb))

which implies that Mi(Ta) = Mi(Tb).
We therefore restrict our attention to the first

(
k
2

)
elements of vλ. Now dλ(Ta, Tb) = 0 implies that

0 = (1− λ)(mi,j(Ta)−mi,j(Tb)) + λ(Mi,j(Ta)−Mi,j(Tb)) (1)

for all i, j ∈ {1, . . . , k}. Although it is possible for Equation 1 to hold for some i, j ∈ {1, . . . , k} when
the trees are different, we will show that for any λ ∈ (0, 1), Equation 1 only holds for all i, j ∈ {1, . . . , k}
when Ta = Tb.

Suppose for a contradiction that we have Ta 6= Tb but dλ(Ta, Tb) = 0. First, observe that when-
ever mi,j(Ta) = 0 then Mi,j(Ta) = 0 also because the MRCA of i and j is the root. For such pairs
(i, j), Equation 1 gives mi,j(Tb) = Mi,j(Tb) = 0, and so dλ(Ta, Tb) = 0 implies that Ta and Tb must
share the same root partition. Now fix λ ∈ (0, 1) and consider a pair of tips x, y ∈ {1, . . . , k} where
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Figure 1: If d(Ta, Tb) = 0 then Ta and Tb must share the same root partition, hence S2 is the same
set of tips in both trees. If mx,y(Ta) 6= mx,y(Tb) then mx,y(Ta) −mx,y(Tb) = n for some n ∈ N. Here
mx,y(Ta)−mx,y(Tb) = 5− 2 = 3, so there exist at least 3 tips z1, z2, z3 between the root and the MRCA
of x and y in Ta, but positioned further from the root than the MRCA of x and y in Tb.

mx,y(Ta),mx,y(Tb) 6= 0 and mx,y(Ta) 6= mx,y(Tb), which must exist since Ta 6= Tb, using part 1. Without
loss of generality, suppose that mx,y(Ta) −mx,y(Tb) = n, where n ∈ N. Then there exist at least n tips
z1, . . . , zn which descend from internal nodes positioned between the root and the MRCA of x and y
in Ta, but in Tb they must descend from internal nodes which descend from the MRCA of x and y, as
demonstrated in Figure 1. That is, (because the trees have the same root partition) there exist at least
n tips z1, . . . , zn such that for each i ∈ {1, . . . , n}

mx,zi(Ta) = my,zi(Ta)

and
mx,zi(Ta),my,zi(Ta) < mx,y(Ta),

whilst
mx,zi(Tb) ≥ mx,y(Tb), and my,zi(Tb) ≥ mx,y(Tb) .

Now, pick zj so that mx,zj (Ta) = mini∈[n]mx,zi(Ta). Then mx,zj (Ta) ≤ mx,y(Ta)− n and so

mx,zj (Ta)−mx,zj (Tb) ≤ (mx,y(Ta)− n)−mx,y(Tb)

= n− n
= 0 .

Now since Equation 1 holds for all i, j ∈ 1, . . . , k, we have

0 ≥ mx,zj (Ta)−mx,zj (Tb) =

(
λ

1− λ

)
(Mx,zj (Tb)−Mx,zj (Ta))

≥
(

λ

1− λ

)
(Mx,y(Tb)−Mx,zj (Ta))

=

(
λ

1− λ

)
(Mx,y(Tb)−Mx,y(Ta) +Mx,y(Ta)−Mx,zj (Ta))

But Mx,y(Tb)−Mx,y(Ta) =
(
1−λ
λ

)
n > 0 and Mx,y(Ta)−Mx,zj (Ta) > 0 so we have a contradiction. Thus

Equation 1 cannot hold for all i, j ∈ {1, . . . , k}, so dλ(Ta, Tb) = 0⇒ Ta = Tb.

1.2 The role of λ

The parameter λ allows the user to choose to what extent the branch lengths of a tree, versus its topology
alone, contribute to the tree distance. This is useful in applications in which the topology of the tree
is relatively well-defined by data but where the root height is difficult to infer, as can be the case in
coalescent analyses. Here, trees may appear close topologically (λ = 0) but more distant when lengths

3



Figure 2: Example trees from T3 to illustrate the effect of changing λ. The distance between Ta and
Tc (dλ(Ta, Tc)) is fixed for λ ∈ [0, 1] because their unmatched edges have the same length. dλ(Tb, Td) <
dλ(Tb, Tc) for λ ∈ (0, 1] because the edge which Tc and Td share and which is not found in Tb is shorter
in Td than in Tc. Most entries increase with λ. The only distance to decrease as λ → 1 is dλ(Ta, Td),
because the difference between the lengths of their unmatched branches is less than one.

are considered, and the length-based analysis will identify genes with different root heights whereas the
topological analysis will compare tree structures. In general, the distance between two trees may increase
or decrease as λ increases from 0 to 1. Since the topology-based vector, m, contains the number of edges
along paths in the tree, and M contains the path lengths, the branch lengths are implicitly compared
to 1 in the convex combination vλ. In other words, if the branch lengths are much larger than 1, then
the entries of M will be much larger than the corresponding entries of m, and M will dominate in the
expression for vλ even when λ is relatively small. Conversely, if the branch lengths are much less than 1,
the entries of M will be much less than those of m, and a value of λ near 1 will be required in order for
lengths to substantially change vλ. In the case when all branch lengths are equal to 1, m = M and the
distance is independent of λ. The example in Figure 2 may provide some intuition.

Appropriate choice(s) of λ will depend on the focus of the analysis and the interpretation of the branch
lengths, which can correspond to times or rates and will of course vary in magnitude depending on the
units (e.g. substitutions per site per year versus substitutions per site per day.) In order to capture
length-sensitive distances between trees, we may wish to use a value of λ such that neither (1− λ)m nor
λM dominate excessively, but naturally this will depend on the analysis. For a more gradual change in
dλ as λ tends to 1, and for comparison of this change across different data sets, it is possible to rescale
the branch lengths, for example by dividing all branch lengths by the median, or by changing the units.
However, this should be done with caution because information is inevitably lost through rescaling. For
example, if a phylogenetic analysis of multiple genes from the same organism had produced trees with
similar topologies but different clock rates (e.g. branches in trees from gene 1 were typically twice as long
as branches in trees from gene 2), this information would be obscured by rescaling.

1.3 Further properties and extensions of our metric

Our metric is fundamentally for rooted trees. A single unrooted tree, when rooted in two different places,
produces two distinct rooted trees, and our distance between these will be greater than zero. It will be
large if the two distinct places chosen for the roots are separated by a long path in the original unrooted
tree. However, it would be straightforward to check if two trees have the same (unrooted) topology in
our metric: root both trees on the pendant edge to the same tip and find the distance. Re-rooting a tree
will induce systematic changes in vλ(T ), with some entries increasing and others decreasing by the same
amount.

The metric dλ is invariant under permutation of labels. That is, for trees Ta and Tb and a label
permutation σ, dλ(Ta, Tb) = dλ(Tσa , T

σ
b ), since this operation corresponds to permuting the entries of

each vector in the same way.
We note that alternative, similar definitions for a metric on Tk are possible. In particular, the metric

defined by
Dλ(Ta, Tb) = (1− λ)‖m(Ta)−m(Tb)‖+ λ‖M(Ta)−M(Tb)‖

gives similar behavior to the metric we have used. The difference between the two is that in D, the
Euclidean distances are taken between the m and M vectors before they are weighted by λ rather than
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after. Rather than a Euclidean distance between two vectors (v for each tree) as in the main text, D
is a weighted sum of two different metrics: the distance between m(Ta) and m(Tb) (first term in the
above), and between M(Ta) and M(Tb) (second term). A benefit of Dλ is that it is linear in λ, so that
the changes as λ moves from 0 to 1 are more intuitive. A disadvantage is that Dλ itself is not Euclidean,
leading to (typically only slightly) poorer-quality MDS plots.

As defined here, our metric compares trees with the same set of taxa (i.e. the same tips). As a
consequence, it is suited to the kinds of questions we have described, in which there is one set of taxa and
a collection of trees are to be compared from different genes, inference methods, and/or sources of data.
However, in some cases, some data sources may not have data for all taxa (for example, not all genes may
be present in all taxa). There are several natural extensions to our approach which allow comparisons of
trees with not-quite-matching tip sets. For example, one can prune the trees until their tip sets match,
optionally adding a ‘penalty term’ for each tip which has to be removed. Alternatively, placement of
missing tips could be imputed using the quartet method of Holland et al. [Holland et al., 2007], nearest-
neighbour methods or other tools from statistical treatments of missing data.

Similarly, there are natural extensions to comparing trees with (some) internal node labels, such as
trees containing fossils as generated by the fossilised birth-death process [Heath et al., 2014]. Where
there is no natural link between the labels of trees, comparisons between unlabelled trees (e.g. kernel
methods [Poon et al., 2013] and spectral methods [Lewitus and Morlon, 2015]) are suitable.

The fact that our metric is a Euclidean distance between two vectors whose components have an
intuitive description means that simple extensions are straightforward to imagine and to compute. For
example, it may be the case that the placement of a particular tip or clade is a key question. This could
occur, for example, in a real-time analysis of an outbreak, where new cases need to be placed on an
existing phylogeny to determine the likely source of infection. We can form a metric that emphasises
differences in the placement of a particular tip or set of tips (say, t1, . . . , ti), by weighting t1, . . . , ti’s entries
of m and M highly compared to all other entries. In this new comparison, trees would appear similar if
their placement of t1, . . . , ti was similar; patterns of ancestry among the other tips would contribute less
to the distance. This functionality is implemented within treescape [Jombart et al., 2015].

1.4 Visualisation with MDS

Visualisation techniques like MDS have been used to explore tree space using other metrics [Holmes, 2006,
Chakerian and Holmes, 2012, Amenta and Klingner, 2002, Hillis et al., 2005, Berglund, 2011] but have
been challenged by poor-quality projections. When a multidimensional set of distances is projected into
a low-dimensional picture there is typically some loss of information which may result in a poor-quality
visualisation. For example, if 10 points are all 4 units away from each other this will not project well
into two dimensions; some will appear more closely grouped than others. However, if there are only 3
such points they can be arranged on an equilateral triangle, capturing the distances in two dimensions.
One approach to checking the quality of a visualisation is a Shepard plot [Shepard et al., 1972], which
is a scatter plot of the 2- or 3-dimensional MDS distance versus the true distance from the metric. We
include Shepard plots as insets in our supplementary figures to demonstrate their quality.

1.5 Navigating islands and selecting summary trees

Tree inference methods use data to constrain the set of possible trees to a relatively small region of
tree space. The fact that data may support trees in separated regions or ‘islands’ of tree space has
deep implications for tree inference and analysis [Maddison, 1991, Salter and Pearl, 2001]. A further
complicating factor is that when taxa have incomplete data at some loci there can be ‘terraces’ of many
equally likely trees, with trees in a terrace all supporting the same subtrees for the taxa with data at a given
locus [Sanderson et al., 2011]. However, the difficulty of detecting and interpreting tree islands has meant
that the majority of analyses, particularly on large datasets, remain based on a single summary tree. This
may be a maximum clade credibility (MCC) tree with posterior support values illustrating uncertainty,
or a maximum likelihood or parsimony tree with bootstrap supports [Heled and Bouckaert, 2013].

Our approach includes a natural way to group trees into clusters. Since distance is defined by
the metric that is used, these are different from previously described tree islands [Maddison, 1991,
Salter and Pearl, 2001]. We note that islands are of particular concern for tree inference and for outcomes
that require the topology of tree such as ancestral character reconstruction; consequently they affect the
interpretation of many phylogenetic datasets [Sullivan et al., 1996]. However, other analyses, and tree
estimation methods themselves, take trees’ branch lengths as well as topology into account. We find that
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the clusters typically merge together in the metric as λ approaches 1; the posterior becomes unimodal
(Figure S4).

There are many challenges to summarising complex tree spaces [Heled and Bouckaert, 2013]. Maxi-
mum clade credibility (MCC) trees are used to summarise posterior distributions by collecting the clades
with the strongest posterior support. However, where these are not concordant the MCC tree can have
negative branch lengths. Furthermore, the MCC tree itself may never have been sampled by the MCMC
chain, casting doubt on its ability to reflect the relationships in the data.

In the main text we used the familiar method of MCC trees with posterior support values to demon-
strate the way that each cluster corresponds to a possible, likely resolution of uncertain clades. In fact,
we can also use the metric directly to find ‘central’ trees within any collection of trees using barycentric
methods such as the geometric median [Haldane, 1948]. That is, we can exploit the fact that our metric
is simply the Euclidean distance between the two vectors vλ(Ta) and vλ(Tb). Among N trees T1, . . . , TN
in a posterior sample, we can find the tree closest to the average vector v̄λ = 1

N

∑N
i=1 vλ(Ti). The average

vector v̄λ may not in itself represent a tree, but we can then find the tree vector(s) from our sample closest
to this average - those which achieve the minimum distance between v̄λ and each vector vλ(Ti). Each
of these corresponds to an actual tree Tc from the original sample, with non-negative branch lengths.
The minimal distance between the central vector and closest tree vectors is a measure of the quality of
the summary: if it is small, each Tc is close to ‘average’ in the posterior. Such a tree Tc is known as
the geometric median tree. Geometric median trees will always have been sampled by the MCMC, and
will not have negative branch lengths. It is also straightforward to weight trees by likelihood or other
characteristics when finding the geometric median. We found that within clusters, geometric median
trees are very close (typically identical) in topology to the MCC tree for the cluster, but with differing,
credible branch lengths.

There are several tests for comparing the support for different tree topologies in a maximum likelihood
framework, including the KH [Kishino and Hasegawa, 1989], SH [Shimodaira and Hasegawa, 1999] and
AU tests [Shimodaira, 2002]. However, these likelihood ratio tests are not applicable to our Bayesian
framework. Figure 3B (main text) demonstrates that the log-likelihoods of the different clusters are
comparable, with no single cluster dominating the others in likelihood. (Note that the actual likelihoods,
rather than the log-likelihoods, are so similar as to be indistinguishable on such a boxplot.) It is therefore
advisable to retain the full Bayesian posterior set of trees wherever practical. Where a small number of
trees is required for further analysis, it is important to retain at least one summary tree for each cluster
until alternative topologies can be ruled out by further data and analysis.

2 Relationship to other tree comparisons

Tree comparisons have been proposed for a variety of purposes. We provide a brief review of some of the
existing tree comparison approaches in the literature and explain their relationships to our method.

2.1 Other metrics on labelled trees

Various metrics have been defined on phylogenetic trees [Kuhner and Yamato, 2014]. Table 1 provides a
brief comparison of the characteristics of some existing metrics.

The vector M(T ) is similar to the cophenetic vector of Cardona et al. [Cardona et al., 2013], following
Sokal and Rohlf [Sokal and Rohlf, 1962], where Mi,j is called the cophenetic value of tips i and j. Parts
(1) and (2) of our proof (Section 1.1) follow directly from results in Cardona et al. [Cardona et al., 2013].
Instead of the pendant branch lengths pi, Cardona et al. use the depth of each taxon, which can be
considered as Mi,i. This involves a repetition of information between Mi,i, Mj,j and Mi,j whenever
Mi,j > 0. In fact, the final k entries of M are only required to distinguish between trees in the rare
event that two trees have the same topology, identical internal branch lengths, but differences in their
pendant branch lengths. Our rationale for using pendant branch lengths rather than tip depths was
therefore to test for this variation without inflating tree distances by re-counting internal branch lengths.
Indeed, since the final k entries of m are not required for our distance to be a metric when λ = 0, it is
natural to choose them so that they have no effect on the distance (all equal to 1) rather than having
them vary by tip depth. The two definitions clearly measure very similar properties of the trees, and for
large k the first

(
k
2

)
vector entries will dominate the tree distance. Experiments on a variety of random

trees and trees inferred from data showed that the two definitions are highly correlated for each value of
λ ∈ [0, 1]: the lowest Spearman correlation found was 0.89 for k = 4, λ = 1, with correlations of ≈ 0.99
for k > 20, λ ∈ [0, 1]. However, the symmetries of the space are slightly distorted when tip depths are
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Metric Root Topology Lengths Euclidean Convex Computation
RF 1 n y y n n 0.04

Branch score 2 n n y y n 0.04
BHV 3 y n y n y 30.78

Path (l1-norm) 4 n y y n n 94.97∗

Path (l2-norm) 5 n y y y n 0.04
Quartet 6 n y n n n O(n log n) 7

Triplet 8 y y n n n O(n log n) 9

rooted SPR 10 y y n n n NP-hard 11

Ours y y y, flexibly y n 0.2

Table 1: A table to compare the applicability of various metrics. The metrics chosen here are applicable
to pairs of trees with the same tip labels. We note that variations of these metrics have been proposed
in the literature and so it may be possible that variants exist with slightly different properties. Here
we compare to the best of our knowledge the metrics as originally proposed in the papers cited. We
compare: Root: does the metric use the position of the root? Topology: does the metric (or a version
of it) use topology only? Lengths: does the metric (or a version of it) use the branch lengths? Eu-
clidean: are the distances Euclidean? Convex: is the metric convex? Computation: an indication of
the computational complexity. Where an R implementation is available we present the system time in
seconds taken to compare a pair of trees each with 1000 tips, on the same computer (Intel(R) Core, i3-
2370M CPU, 2.40 GHz, 4GB RAM). The functions used were RF.dist from phangorn [Schliep, 2011]
for RF, KF.dist from phangorn [Schliep, 2011] for branch score distance, dist.multiPhylo from dis-
tory [Chakerian and Holmes, 2013] for BHV, distTips from adephylo [Jombart and Dray, 2010] for the
l1-norm path difference, path.dist from phangorn [Schliep, 2011] for the l2-norm path difference, and
treeDist from treescape [Jombart et al., 2015] for our metric. ∗The time for the l1-norm path difference
could be substantially improved to match that of the l2-norm but we did not find such an implementation.

used: Figure 3 revisits our example from the main text on the trees with six tips (Figure 2A, λ = 0)
with the alternative definition of the metric, using tip depths rather than pendant lengths for the final
k entries of each tree vector. The 3-fold symmetry is less apparent, particularly in the ‘pink’ trees, and
the more balanced trees are less central. Nevertheless, much of the intuitive structure remains, and a key
advantage of the tip depth approach of Cardona et al. is that it allows for the presence of nested taxa
(taxa which are internal nodes of the tree).

We have compared our metric to that of Robinson and Foulds (RF) [Robinson and Foulds, 1981] in
the main text because it is the most widely used metric. However, RF and its branch-length weighted
version [Robinson and Foulds, 1979] are fundamentally different from our metric because they are de-
fined on unrooted trees, whereas our metric emphasises the placement of the root and all the descen-
dant MRCAs. Similarly, many other metrics are designed for unrooted trees, including the branch
score distance [Kuhner and Felsenstein, 1994] and the tip-to-tip path length metrics of Williams and
Clifford [Williams and Clifford, 1971] (using the l1-norm) and Steel and Penny [Steel and Penny, 1993]
(using the l2-norm). These tip-to-tip path metrics can either be weighted by branch lengths or not. In
common with much of the literature we will refer to the Steel and Penny metric as the ‘path difference
metric’ but note that it also goes by many other names including the patristic distance, nodal distance,
tip distance and dissimilarity measure. The path difference metrics compare the distance between each
pair of tips in a tree; in essence, they consider the distance between tips and their MRCA, whereas
our metric considers the distance between the root and the MRCA. The branch score distance is closely
related to the RF metrics [Kuhner and Felsenstein, 1994]: unweighted RF counts the unmatched edges
between trees, weighted RF sums the branch lengths of unmatched edges, whereas the branch score dis-

1[Robinson and Foulds, 1979, Robinson and Foulds, 1981]
2[Kuhner and Felsenstein, 1994]
3[Billera et al., 2001]
4[Williams and Clifford, 1971]
5[Steel and Penny, 1993]
6[Estabrook et al., 1985]
7[Brodal et al., 2013]
8[Critchlow et al., 1996]
9[Brodal et al., 2013]

10[Hein et al., 1996]
11[Bordewich and Semple, 2005]
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Figure 3: The space of trees with six tips according to an alternative definition of the metric where the
final k entries are the tip depths rather than pendant lengths (λ = 0). In parallel to Figure 2A, the
colours correspond to tree shapes.

tance takes the sum of squared differences between matched internal branch lengths, plus the squared
lengths of unmatched branches. For a pair of trees where all branches have length 1, these three measures
give the same distance [Kuhner and Felsenstein, 1994]. The version of the branch score distance which
we use, from the R implementation in phangorn [Schliep, 2011], calculates the square root of the measure
described above (as defined later in [Kuhner and Felsenstein, 1994]), which is a metric.

The metric introduced by Billera, Holmes and Vogtmann (BHV) captures branch lengths as well as tree
structure [Billera et al., 2001] on rooted trees. The BHV tree space is formed by mathematically ‘glueing’
together orthants. Each orthant corresponds to a tree topology and moving within an orthant corresponds
to changing the tree’s branch lengths. Moving from one orthant to an adjacent one corresponds to a
nearest-neighbour interchange move. The metric is convex: for any two distinct trees T1 and T2, there
is a tree T3 ‘in between’ them, i.e. such that dBHV (T1, T3) + dBHV (T3, T2) = dBHV (T1, T2). This is a
mathematically appealing and useful property, in part because it allows averaging of trees [Bacak, 2014].
The metric does not allow the user to choose a balance between the topology of the tree and the branch
lengths.

We have included the rooted SPR distance [Hein et al., 1996] in Table 1 since it is most natural
to compare our metric to other rooted metrics. We note that there is also a definition for SPR on
unrooted trees, but this is extremely difficult to calculate. Recent work [Whidden and Matsen IV, 2015]
has enabled the computation of unrooted SPR distances as large as 14 on trees with 50 tips.

As noted in the main text, any positive linear combination of metrics is a metric, so tree metrics can
be combined as desired to detect a variety of features within a tree comparison [Liebscher, 2015]. For
example,

d∗(Ta, Tb) := w1d0(Ta, Tb) + w2dRF (Ta, Tb) + w3dBHV (Ta, Tb)

where w1, w2, w3 > 0 are weight coefficients, would be a metric which compares trees from both rooted
and unrooted perspectives, with a contribution from the branch lengths in the dBHV term. Cardona et al.
also note that vectors which characterise trees can be compared by any norm lp, but that the Euclidean
norm l2, which we also use, has the benefits of being more discriminating than larger values of p, and
enabling many geometrical and clustering methods.

2.2 The set of trees with six tips

Figure 4 shows the MDS plot of the space of trees on six tips (with unit branch lengths) under our
metric, as in the main text. For comparison, we also provide the analogous plots according to other
metrics, namely RF [Robinson and Foulds, 1981], BHV [Billera et al., 2001] and the path difference met-
ric [Steel and Penny, 1993]. Note that because we have used unit branch lengths, m = M and so our

8



(a) λ = 0 (b) RF

(c) BHV (d) Path difference

Figure 4: MDS projections of the shape of T6 according to various ‘topological’ metrics, with correspond-
ing Shepard plots. In order to include the BHV metric in this comparison we assigned all branch lengths
to be 1, with the result that on these trees, our metric is invariant to λ ∈ [0, 1] and the unweighted and
weighted RF metrics are the same.

(a) Our metric; λ = 0 (b) RF (c) BHV (d) Path difference

Figure 5: Histograms and matrices to show the distances between all 945 trees on six tips, according to
different tree metrics. Colours along the vertical and horizontal axes correspond to the shape of tree, as
in Figure 4a.

metric is invariant under λ ∈ [0, 1] in this example. Similarly, the weighted and unweighted RF metrics
will give the same distances for these trees, and the branch score metric would simply give the square root
of those distances. There is no ‘topology only’ version of the BHV metric, but applying it to trees with
unit branch lengths provides a natural comparison to the ‘topological’ metrics (metrics which disregard
branch lengths).

All 945 possible tree shapes and permutations of their labels are present in the input set of trees, and
consequently there is no asymmetry that should lead to one group being separated from the rest. Our
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(a) λ = 1 (b) Branch score

(c) Weighted RF (d) BHV (e) Weighted path difference

Figure 6: MDS projections of the trees in T6 with random branch lengths according to various branch-
length metrics, with corresponding Shepard plots.

metric captures the symmetry in the space and illustrates this in the MDS projection (Figure 4a). The
Euclidean nature of our metric means that it is well-suited to visualisations that project distances into
two- or three-dimensional Euclidean space. In contrast, in the RF and BHV metrics (Figures 4b and 4c),
poor-quality projections lead to apparent distinct tree islands where none exist. This makes detecting
genuine islands in posterior sets of trees difficult using RF or BHV.

The inset Shepard plots (see Section 1.4) are a way to assess the quality of an MDS projection.
They illustrate that the correspondence between the projected distances and true distances is better in
our metric than RF and BHV, and approximately as good as the path difference metric, though the
projection distance can be much smaller than the true distance (but not the converse). MDS projections
are of higher quality for trees from data than in the space of all trees on six tips (e.g. Figure 9).

The path difference metric (Figure 4d) shows some symmetry and structure. The more balanced tree
shapes naturally occur towards the extremes of the space, as they achieve the largest tip-tip distances. In
contrast, in our metric highly unbalanced trees appear near the edges of the space because the MRCAs
can achieve greater distances from the root, and because permutations of the tips on unbalanced trees
lead to greater differences in the root to MRCA distances than permutations of tips in more symmetric
trees. This illustrates that the path difference metric measures and prioritises different tree characteristics
from ours.

To supplement Figure 2B from the main text, we repeat the histograms and distance matrices on
the space of all trees with six tips for our metric and RF, and additionally provide the histograms and
distance matrices for BHV [Billera et al., 2001] and the path difference metric [Steel and Penny, 1993]
in Figure 5. The spreads of the histograms show that BHV and the path difference detect more subtle
differences than RF. Distinctions between tree shapes in the distance matrix are more noticeable in the
path difference than in RF or BHV, and are most clearly distinguishable in ours.

We provide in Figure 6 an analogue to Figure 4 using the branch-length sensitive metrics on the
six-tip trees, where each tree was assigned random branch lengths sampled uniformly at random in the
range (0, 1). This toy example serves to show that, typically, projections are of better quality when
branch lengths are included (inset Shepard plots) than when comparing trees by topological metrics.
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Figure 7: Panel of scatterplots and Spearman correlation coefficients to show the relationships between
the topological tree metrics implemented in R: our metric (top left, λ = 0), unweighted RF, BHV (trees
with unit branch lengths) and unweighted path difference (Steel & Penny).

This is largely explained by the fact that the branch-length metrics each produced a range of values
(see histograms in Figure 8), resulting in distances which are easier to project than collections of nearly-
equidistant points. The Shepard plot for the weighted path difference shows that it lends itself particularly
well to 2D-projection in this example. We have found that points (trees) tend to be much closer together
according to branch-length metrics than with topological metrics, and that large ‘gaps’ between tree
topologies are usually masked when branch lengths dominate. The weighted RF metric (Figure 6c) is
something of an exception in this respect, presenting more of a ‘3-arm’ structure than a single cluster.
The colours in these plots correspond to the tree shapes as before. We see that tree shape information is
largely masked by branch lengths, although the property of pectinate trees achieving the largest distances
from more balanced trees is preserved to a small extent in some of the plots.

Finally, in Figures 7 and 8 we present a comparison of the distances given by each of the tree metrics
implemented in R. For Figure 7 we sampled 5000 of the 446040 possible pairwise tree comparisons on all
945 trees with six tips, and present scatterplots of the distances according to each metric. The Spearman’s
rank correlation coefficient between our metric and others is weak; the strongest correlation we found
(0.76) is between RF and the path difference metric, but it is clear that each of these metrics measures
different properties of trees. For Figure 8 we used the six-tip trees with random branch lengths. We
again sampled 5000 of the 446040 possible pairwise tree comparisons using five branch-length metrics:
our metric (λ = 1), weighted RF (which we implemented based on ‘RF.dist’ and ‘KF.dist’ from phangorn),
branch score distance, BHV and weighted path difference. Here, the most strongly correlated metrics are
branch score distance with BHV (0.73) and weighted path difference (0.74), but again we see that each
metric prioritises different tree characteristics.

2.3 Other tree comparison methods

Comparing phylogenetic trees, and comparing the quality with which they capture a set of data, are
long-standing challenges for which there are several approaches. The KH [Kishino and Hasegawa, 1989],
SH [Shimodaira and Hasegawa, 1999] and AU tests [Shimodaira, 2002] use classical hypothesis testing to
compare the likelihoods of a given set of data across different phylogenetic trees. These tools are suited
either to topologies chosen a priori and not derived from the same data set (in the case of the KH test), or
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Figure 8: Panel of scatterplots and Spearman correlation coefficients to show the relationships between
the branch-length tree metrics implemented in R: our metric (top left, λ = 1), branch score distance
(strongly correlated with weighted RF), BHV and weighted path difference (Steel & Penny).

to tree quality comparison in a maximum likelihood setting. They do not capture the diversity, structure
and distribution of a set of trees themselves, and do not naturally map to the Bayesian setting. In the
Bayesian setting, the posterior collection of trees represents the collection of trees one should consider
given the data and the prior; it is not appropriate to use likelihood-based tests to select from the posterior.
If obtaining a maximum likelihood tree is the aim, then maximum likelihood tree inference tools should
be used directly. In this case, visualising and comparing trees derived from bootstrapping is a natural
application of our metric-based approach.

Many efforts to compare trees directly to each other have used the RF metric or closely-related
partition/split comparisons and similarity measures. These tools include:

• MDS plots [Amenta and Klingner, 2002, Hillis et al., 2005, Berglund, 2011] of RF distances be-
tween trees

• kdetrees [Weyenberg et al., 2014] (which uses either RF, BHV geodesic distances or path difference;
see below)

• Nye et al.’s alignment similarity measure [Gilks et al., 2006]

• Koonin et al.’s work on the forest of life [Koonin et al., 2011]

• CONCLUSTADOR [Leigh et al., 2008] and CONCATERPILLAR software [Leigh et al., 2011]

• Nye’s use of Robinson-Foulds distances to create trees of trees [Nye, 2008]

• Chaudhary’s extension of RF to multi-labelled trees [Chaudhary et al., 2013].

Accordingly, these comparisons may suffer in performance because of the limitations of the RF metric.
For example, Koonin et al. [Koonin et al., 2011] compared the fractions of splits in common between trees
to chart the ‘forest of life’, and commented that ‘nearly universal trees’ were grouped within a cluster
(of trees) and nearly equidistant from other clusters. We have found that the RF metric may frequently
produce equidistance, and that RF clustering does not necessarily reflect intuitive tree relationships.
Leigh et al. [Leigh et al., 2011] noted that the Conclustador software may have erratic behaviour due to
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large RF distances resulting from small rearrangements, and Hillis et al. [Hillis et al., 2005] noted the
poor quality of MDS projections of RF tree-tree distances, which arises in part because the RF metric
takes on relatively few different values.

Other tree comparison approaches which do not rely on the RF metric or the fraction of split differences
include:

• MDS plots of BHV distances [Holmes, 2006, Chakerian and Holmes, 2012]

• kdetrees [Weyenberg et al., 2014] using the BHV or path difference metrics

• Phylo-MCOA [de Vienne et al., 2012]

• finding clusters of similar phylogenies amongst gene trees [Gori et al., 2016]

• the Maximum Agreement SubTree (MAST) method [Finden and Gordon, 1985]

• methods relying on MDS, PCA or MCOA projections of tree distances [de Vienne et al., 2012,
Choi and Gomez, 2009]

• tests for incongruence amongst trees [Haws et al., 2012, Salichos et al., 2014]

The R package kdetrees [Weyenberg et al., 2014] aims to find ‘outlier’ trees using tree comparisons,
and is best for datasets with a large number of genes, or sources of trees, and a relatively small number of
taxa. In infectious disease applications, particularly for viruses, the situation is typically the opposite: a
large number of taxa (thousands) and small number of genes (perhaps fewer than a dozen). Nevertheless,
we compared kdetrees to our method using the kdetrees published example: a set of 268 trees, each with
8 tips. Our method identifies the same set of outliers, more quickly than kdetrees (0.33 secs versus 2.11
secs on a desktop computer). More fundamentally, though, trees identified as outliers are outliers because
of their unusual branch lengths. A simple check of the mean branch lengths recovers the same outliers in
just 0.03 seconds. At its heart, kdetrees suffers from the limitations of its underlying metrics: RF is not
sufficiently sensitive and too many trees appear the same distance apart, and approaches like the BHV
metric which cannot adjust for branch lengths are easily dominated by differences in lengths alone. In
a larger test of 100 trees, each with 100 tips, kdetrees crashed whereas our function completed in 1.48
seconds.

Phylo-MCOA [de Vienne et al., 2012] also aims to find ‘outlier’ trees and relies heavily on PCO pro-
jections, which often do not capture distances well. Gori et al. use a variety of unrooted tree metrics
followed by clustering methods to classify genes by common evolutionary history [Gori et al., 2016]. This
technique is particularly appropriate for scenarios where there are many gene trees and a small num-
ber of phylogenetic clusters, but again carries the limitations of the underlying metrics. The MAST
method [Finden and Gordon, 1985] is a similarity score based on the size of the maximum shared sub-
tree. It is NP-hard to compute and has been outperformed by the RF metric in simulation experi-
ments [Kuhner and Yamato, 2014].

Several methods have relied on MDS, PCA or MCOA projections of tree distances to compare
trees [de Vienne et al., 2012, Choi and Gomez, 2009]. Directly comparing distance projections of trees
allows trees of different sizes to be compared, but this is at the cost of comparing projections which are
potentially very poor-quality reflections of the underlying structure in trees. In contrast, as described in
Section 1.3, natural extensions of our metric and others can permit metric-based comparisons of trees
with overlapping but non-identical tip sets, without the loss of information in the trees and without the
need to align PCA-style projections to each other.

Haws et al. test for phylogenetic incongruence using a machine-learning approach which relies on
a priori knowledge of dissimilarity between groups of trees [Haws et al., 2012]. Salichos et al. use
information-theoretic ideas (Shannon entropy) together with partition frequencies to quantify tree in-
congruence [Salichos et al., 2014]. This approach is closely linked to maximum likelihood tree inference
with bootstrap, and to the support values we have used in MCC trees. We have found that the more
tightly an apparent cluster of trees is grouped in our metric, the higher the support values of the cluster’s
MCC tree (see Figure 11).

Although state of the art tools for recombination detection are based on direct sequence compari-
son and do not use trees [Croucher et al., 2015, Stenetorp et al., 2012] there are methods for detecting
recombination which both construct trees and compare them. These are best suited to divergent data
with relatively few taxa and genes. For example, the GARD software [Pond et al., 2006] is limited to at
most 50 sequences on its web server, and the Boussau et al. models [Boussau et al., 2009] can be applied

13



to ‘dozens’ of sequences. They rely on neighbour-joining methods for their tree inference which means
that they are unable to exploit the richer phylogenetic information obtained from more time-consuming
inference methods such as BEAST. On our data, GARD produced a single neighbour-joining tree for the
VP30 gene of Ebolavirus and found no evidence for recombination. The tree was different from any of
those produced in the BEAST analysis from the same sequences. Neighbour-joining trees have the signif-
icant drawback that they often have negative branch lengths resulting from inter-taxa distance patterns
that are not consistent with a tree.

Our approach detects phylogenetic incongruence, which can be a natural result of non-tree-like evo-
lution such as recombination or hybridisation. Our tree metric could in principle be part of a pipeline
to detect recombination, either by comparing trees from different genes, or by comparing trees derived
from sequences with particular loci removed: if a locus, when removed, substantially alters an inferred
tree it may be a sign that the locus contains different phylogenetic information than the rest of the data.
We have not benchmarked methods based on the metric’s tree comparison against other tree-based ap-
proaches to detect recombination. Furthermore, detecting phylogenetic incongruence between gene trees
using tree metrics has the limitation that genic data must contain sufficient variation to infer high-quality
trees. Where this is the case, we suggest that constructing and comparing high-quality trees with the
aid of informative tree metrics is a useful tool with which to explore data. Where genic data are not
sufficient for high-quality tools or where recombinations are likely to occur within genes, other tools are
likely most appropriate.

3 Supplementary results

3.1 Anole lizards

Figure 9 shows the MDS plots of posterior species trees for several values of λ, increasing from λ = 0 (as
in the main text) to λ = 0.1 (where branch lengths are weighted quite highly because the lengths are often
much larger than 1, with a mean of 13 and median of 3.7 in units of millions of years before the present).
As λ increases, clusters spread and merge together, though at λ = 0.1 they remain visible as distinct
‘strips’, particularly in the 3D plot. The division between the left and right sides of the plot persists.
Note that the tree colouring is the same on each plot to help see how the clusters ‘merge’; clustering
algorithms typically do not continue to identify the same clusters as λ increases. Recall that the trees
in Figure 3 of the main text are displayed as cladograms (branch lengths = 1) because we compared
tree topologies (λ = 0) and this makes differences more clear. In Figure 10 we show the same trees with
their original branch lengths. Many of the uncertain clade resolutions occur around short edges, which
explains why the tree differences become less distinct as λ increases.

Individual gene trees in the anole data had large polytomies and did not mirror these alternative
resolutions of the uncertainty in the posterior [Geneva et al., 2015], though it is possible that these
alternatives would be mirrored by gene trees with a sufficiently high number of samples. It is also
possible that there are clusters of likely tree topologies that the *BEAST algorithm did not reach.

The same approach (pairwise distances followed by k-means clustering) that we have used with our
distances can, in principle, be used with any metric or quantitative tree comparison tool. We used k-
means clustering and comparison of BIC values to cluster the anoles posterior species trees using RF
distances. Figure 11 shows the results. k-means clustering will always allow some clusters to be obtained;
we found that k = 12 groups minimised the BIC here.

Two of the RF clusters broadly correspond to the groups we identified (in the sense that the MCCs
have the same topology), namely our orange cluster containing the posterior MCC, and our pale orange
cluster. The RF clusters are not visibly tightly grouped or well-separated in either 2D or 3D MDS plots
(Figures 11a and 11b). Shepard plots show that the correlation between the projected distances and the
RF distances is not strong, so visible grouping is not a good test of how meaningful the clusters are.
We compared the ‘tightness’ of clusters, measured by the mean tree-tree distances within clusters, to
the level of certainty (posterior support values) in MCC trees for the clusters. Our metric has higher
MCC support in tighter clusters. In other words, groups of trees a small distance from each other have
more highly resolved clades than those far from each other (Figure 11d). The pink RF cluster is the
only large, well-supported cluster that the RF metric detects and its topology is the same as the MCC.
The other RF clusters have posterior support values that are more uncertain than the posterior itself.
In other words, the RF metric does not resolve uncertainty into distinct, well-supported alternative trees
(e.g. Figure 11c).
In contrast, our metric identifies large, tight clusters with high posterior supports.
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(a) λ = 0 (b) λ = 0

(c) λ = 0.05 (d) λ = 0.05

(e) λ = 0.1 (f) λ = 0.1

Figure 9: MDS plots of the posterior anoles species trees for several choices of λ. (a) is the same as Figure
3C in the main text; (b) is a 3D MDS plot of the same clusters with the same colours, which better shows
the separation, particularly between the dark blue cluster and the others. (c) and (d) are 2D and 3D
MDS plots of the tree distances when λ = 0.05. The inclusion of lengths spreads the trees out; whereas
in (a), all trees with the same topology are plotted on top of each other, here, variation in the branch
lengths contributes to the distances, spreading the clusters out. (e) and (f) have λ = 0.1. Clusters are
merging together somewhat, but are still distinctive, which the 3D visualisation illustrates. 3D plots have
an additional degree of freedom, allowing MDS projected distances to be more closely correlated with
the input distances than in 2D (inset Shepard plots).

When there are distinct, likely alternative topologies, we suggest that it is often not sufficient to retain
only one tree for further analysis. In the case of the anole lizards, trees from different clusters support
different conclusions about their biogeographic origins and dewlap colouration. Using the locations given
in [Geneva et al., 2015] we plotted the geographical information given by our alternative trees using
phylo.to.map from the R package phytools [Revell, 2012]. Two examples are provided in Figure 12.
In parallel with Geneva et al., we have discarded the outgroup for these trees for ease of plotting.
Results indicate that ocior and distichus (the anoles from the satellite islands and Bahamas) are more
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(a) Overall MCC (b) Dark orange group (c) Red group

(d) Light orange group (e) Light green group

Figure 10: Anoles consensus trees from our λ = 0 analysis, showing lengths in millions of years.

closely related to anoles from the East of Hispaniola (the North paleo-island) according to the MCC tree
(Figure 12a) but to anoles from the South-West (the South paleo-island) according to other likely trees
(Figure 12b).

We also performed stochastic character mapping to explore the evolution of dewlap colouration. Fol-
lowing Geneva et al. [Geneva et al., 2015], we discarded the outgroup and added duplicate tips for caudalis
and favillarum which are found with both pale yellow and dark orange/red dewlap colours. Using the
dewlap colours from [Geneva et al., 2015] we performed an MCMC exploration of possible transition ma-
trices using make.simmap from phytools, sampling 1000 times. Whilst all eight tree topologies supported
the conclusion that evolution between the colours has occurred repeatedly across the species group, the
inferred transition rates differed. The posterior stochastic character maps for each tree topology varied
dramatically (with the root node prior probabilities being 0.5 each for yellow and red), showing for ex-
ample different colourings for ancestors of the major clades. However, given high transition rates the
internal colouring is difficult to infer with confidence. Figure 13 shows examples of the resulting character
maps and transition rates. In each case, we simply present the final character map from the 1000 MCMC
samples.

3.2 Ebolavirus

Figure 14 supplements Figure 4 from the main text. Shepard plots are provided to indicate the quality
of the projections. The distinct VP30 clusters detected by our metric are discernible directly from the
distribution of pairwise tree distances (see the Shepard plot: our metric found no tree pairs whose distance
was between 7.7 and 10.8). To illustrate the groups of trees (instead of the groups’ MCC trees), we have
provided their DensiTree [Bouckaert, 2010] plots in Figure 14. These show the same distinct placements
of the Sudan clade as those described in the main text.

One difference among the clusters can be interpreted as three different choices of the root for the
three major clades. The fact that this uncertainty in the timing of diversification in the ancient history
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(a) (b) (c) Lilac cluster MCC

(d) λ = 0 (e) RF

(f) λ = 0 (g) RF

Figure 11: An analysis of the anoles posterior species trees using the RF metric. MDS plots in 2D (a)
and 3D (b) do not show well-separated clusters. (c) MCC tree from the lilac RF cluster, showing multiple
areas of uncertainty. (d) and (e) relationship between the spread (mean pairwise distance) within a cluster
and the level of certainty in the cluster’s MCC tree. The level of certainty is measured by the mean of
the cluster’s MCC support values that are less than 1. In our metric, the mean support of unresolved
clades is highest in tightly-defined clusters (d); this is not the case in the RF metric (e). (f) and (g)
compare the spread of a cluster with the number of unresolved clades in its MCC. Our metric shows no
strong relationship whereas in the RF metric, clusters with higher spread have more unresolved clades.
In (d)-(f), sizes of points correspond to the number of trees in the cluster, and the colours correspond to
the MDS clusters for each metric.

occurs in VP30 and not in the other 6 genes is a substantial difference. It is also not the only difference
between clusters, as the Sudan 2011 and Reston 1990 placements also varied. The VP30 trees also remain
distinctive when lengths are taken into account. Our tree comparison detects the incongruence amongst
the posterior trees for VP30, and identifies the three alternative underlying structures, but it does not in
and of itself explain why this incongruence has occurred.
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(a) MCC tree from orange cluster, left hand side
of MDS plot

(b) Median tree from pale orange cluster, right
hand side of MDS plot

Figure 12: Examples of the biogeographic implications of different, likely tree topologies for anole lizards.

(a) MCC tree from orange cluster. In-
ferred transition rate: 1.30521

(b) Median tree from pale orange cluster.
Inferred transition rate: 1.366596

Figure 13: Stochastic character map estimates of transitions between primarily yellow and primarily dark
orange/red dewlap colour in anole lizards.

BEAST estimates of clock rates and the root height differed among the Ebolavirus genes (horizontal
scales in the DensiTree plots in Figure 14). When λ = 1, it is this difference that is primarily detected
by the metric and it can also be detected directly from the log files and tree heights. We compared the
BHV metric distances to our λ = 1 (the most comparable alternative as BHV compares rooted trees and
captures branch lengths). In both, differences in root heights overwhelmed structural differences in the
trees.

3.3 Other datasets

We analysed data from viral and higher organisms to illustrate that mapping the space of phylogenetic
trees is a powerful tool in different contexts. Phylogenetic methods face particular challenges in higher
organisms. In both viruses and bacteria, genetic variation occurs quickly enough that phylogenetic meth-
ods can detect evolution over short time periods using single nucleotide polymorphisms. In most higher
organisms diversity accrues more slowly, genomes are larger, and haplotype phasing must be performed
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Figure 14: Ebola analysis, parallel to Figure 4 in the main text, with additional Shepard plots. Den-
siTree [Bouckaert, 2010] images have been used instead of MCC trees to show the resolution of the Sudan
clade within each cluster. In a reflection of Figure 4, (A) is a DensiTree image of all 1200 trees from
individual genes and from all genes together. (B) is an MDS plot of all trees, coloured by gene. The ‘gap’
between the majority of trees and the two distinct VP30 clusters is clearly visible in the inset Shepard
plot, and is therefore not a spurious result of the projection. (C) gives a closer look at the MDS plot of
the majority of trees, as indicated in (B). (D) is the analogous MDS plot to (B), based on RF distances.
The collection of trees from each cluster are shown in (E)–(F): (E) is the bottom left VP30 cluster, (F)
is the top VP30 cluster and (G) is all the other trees, corresponding to the main cluster.

to determine whether variation at a locus occurs on the same chromosome. Furthermore, while viruses
and bacteria do exchange genetic material by routes other than descent (horizontal gene transfer), this
is rarer than descent itself. Unlike species’ overall ancestry, the ancestry of individual higher organisms
is not tree-like because individuals have more than one parent. Estimating species trees from multiple
genes sequenced in multiple taxa is a formidable challenge [Nichols, 2001, Degnan and Rosenberg, 2006,
Heled and Drummond, 2010, Anderson et al., 2012]. We present here two additional datasets, one in a
higher organism (chorus tree frogs) and one in another virus (dengue).

3.3.1 Chorus Frogs

Recently, Barrow et al. used anonymous nuclear loci to estimate a phylogeny for the North America
genus of chorus frogs, Pseudacris [Barrow et al., 2014a]. As in the case of anole lizards (main text),
this genus is a model system with evidence of reproductive character displacement, allopatric diver-
gence, and hybridisation and reinforcement [Fouquette Jr, 1975, Gartside, 1980, Lemmon et al., 2007a,
Lemmon et al., 2007b, Lemmon, 2009, Lemmon and Lemmon, 2010]. Data included sequences for 44 in-
dividuals from 3 mitochondrial loci and 27 nuclear loci. Full details of the methods and data are available
in [Barrow et al., 2014a, Barrow et al., 2014b] respectively. Barrow et al. found that four major clades
of frogs were supported consistently but that there was discordance between trees derived from nuclear
and mitochondrial data. They interpreted this as a signal of a possible selective sweep, or mitochondrial
introgression [Barrow et al., 2014a]. The trees are broadly concordant but there are a number of points of
uncertainty in the posterior MCC (Figure 15). We used posterior tree file species 1367351410414.trees

with the MCC tree 2allele-44taxa-2Kburn.tree, available in [Barrow et al., 2014b]). We sampled
1000 trees from the posterior, computed tree-tree distances, and visualised the posterior with MDS and
k-means clustering.

There are several tightly-defined clusters of distinct trees. Clusters have much higher MCC support
values than the MCC for the whole posterior. In particular, clusters differ in whether triseriata and kalmi
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Figure 15: Chorus tree frog analysis showing the correspondence between clusters and distinct topologies.
The overall MCC tree is marked by a yellow triangle, and examples of cluster MCC trees are shown, as
indicated. Again, the existence of clusters is visible in the Shepard plot in the distribution of distances
along the horizontal axis.

are sister clades (as in the posterior MCC, the orange cluster and the purple cluster) or, alternatively,
kalmi, ferariumC and ferariumI form a sister clade to triseriata (e.g. red cluster, light purple cluster).
They also differ in the timing of clarki ’s divergence from the brimlei/brachyphona clade, and at several
other points. The clusters represent alternative, well-supported patterns in the frogs’ evolution.

3.3.2 Dengue

In their paper introducing BEAST [Drummond and Rambaut, 2007], Drummond and Rambaut demon-
strated their Bayesian analysis using 17 dengue virus serotype 4 sequences from [Lanciotti et al., 1997]
under varying priors for model and clock rate. As a means of comparing posterior tree distribu-
tions under different BEAST settings, we ran the xml files provided in Drummond and Rambaut’s
paper [Drummond and Rambaut, 2007] in BEAST v1.8 and compared the resulting trees. Figure 16
shows MDS plots of two of these analyses: Figure 16a is a sample of the posterior under the standard
GTR + Γ + I substitution model with uncorrelated lognormal-distributed relaxed molecular clock; Fig-
ure 16b is a sample from the posterior under the codon-position specific substitution model GTR + CP,
with a strict clock. These analyses demonstrate some of the different signals which can be detected by
visualising the metric’s tree distances. In particular, they are informative of the extent to which a set of
priors constrains the posterior. Distinct clusters are visible in (a), whereas in (b) there are some tight
bunches of points (and again, the MCC tree is in the largest cluster) but the posterior is not as clearly
separated into distinct clusters. Additionally, trees in (b) are more tightly grouped together overall (the
scale of the y-axis) indicating that there is less conflict in the phylogenetic signals in (b). We ran BEAST
twice with the settings from (a) using different random starting seeds and found that the space of trees
accepted in each run was similar, with the same clusters. It is also encouraging that the MCC tree from
the first BEAST run had the same topology as that from the second run, and that this topology again
sits in the largest cluster (yellow triangle in Figure 16a).

This simple comparison demonstrates the potential of the method for testing the extent to which
priors constrain the posterior, and the stability of an analysis to different starting seeds. We can compare
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(a) GI relaxed clock, λ = 0 (b) CP strict clock, λ = 0

Figure 16: MDS plots of dengue fever trees sampled from posteriors demonstrate differences in the space
of trees explored by BEAST under different settings. MCC trees are marked by yellow triangles. (a)
GTR + Γ + I substitution model with uncorrelated lognormal-distributed relaxed molecular clock (b)
Codon-position specific substitution model GTR + CP, with a strict clock.

different analyses not only by their MCC trees, but also by their ‘spread’ within tree space, the presence
of clusters and gaps, multiple representative trees, and so on. Whilst a highly constrained and unimodal
posterior cannot on its own confirm a good choice of priors, such information can aid in model selection.
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Problems in Particle Physics, Astrophysics and Cosmology, Proceedings of PHYSTAT05, pages 197–
208. Imperial College Press.

[Jombart and Dray, 2010] Jombart, T. and Dray, S. (2010). adephylo: exploratory analyses for the
phylogenetic comparative method. Bioinformatics, 26:1907–1909.

[Jombart et al., 2015] Jombart, T., Kendall, M., Almagro-Garcia, J., and Colijn, C. (2015). treescape:
Statistical Exploration of Landscapes of Phylogenetic Trees. R package version 1.8.15.

[Kishino and Hasegawa, 1989] Kishino, H. and Hasegawa, M. (1989). Evaluation of the maximum likeli-
hood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order
in hominoidea. Journal of Molecular Evolution, 29(2):170–179.
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