Supplementary Materials and Methods for Teh et al., "An *in vivo* reporter to quantitatively and temporally analyze the effects of CDK4/6 inhibitor-based therapies in melanoma."

Western blot antibodies

Phospho-RB1 (S780) (#9307), RB1 (#9309), p15INK4B (#4822), p16INK4A (#4824), p18INK4C (#2896), cleaved PARP (#9541), cleaved-caspase 3 (#9661), survivin (#2808), BCL-2 (#2870), ERBB3 (#4754), SOX2 (#3579) and SOD2 (#13141) antibodies were purchased from Cell Signaling Tech, Inc. (Danvers, MA). CDK4 (sc-260-G), CDK6 (sc-7181), cyclin A (sc-751) and cyclin D1 (sc-718) antibodies were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX). Actin (A2066) and fibronectin (F3648) antibodies were purchased from Sigma-Aldrich Co (St. Louis, MO). Bim/BOD antibody (ADI-AAP-330) was purchased from Enzo Life Sciences (Farmingdale, NY).

Pharmacokinetic Study

Immunodeficient nude mice were treated with control chow (n=2 for day 8 and n=3 for day 15) or CDK4/6 inhibitor (429mg/kg palbociclib) chow (n=5). Blood samples were collected retro-orbitally at two separate time-points: day 8 and day 15. Plasma was separated immediately by centrifugation at 1000 RCF for 10 minutes and stored at -80°C. Analyses of plasma samples were carried out by Integrated Analytical Solutions, Inc. (Berkeley, CA) using LC-MS/MS.

RPPA Heatmap Analysis

Samples were separated based on treatment types. The log2 values for the drug resistant samples were used to perform two sample t-tests with 10,000 permutations, followed by multiple hypothesis test corrections for each drug group comparison. A list of significant antibodies was determined by using positive false discovery rate and fold change cutoffs of 0.05 and 1.5 respectively. Median-polished log2 values of the significant antibodies were used to perform hierarchical clustering. Calculations and images were performed using the mattes, mafdr and clustergram functions in Matlab® (version 2015b).

In Vivo Statistical Analysis

In vivo data has error bars representing SEM. The log-transformed tumor volumes were modeled using linear mixed effects (LME) models adjusting for correlations between repeated measures from the same animal and allowing for the mouse-specific tumor growth trajectories. The fixed effects included the treatment group (control, CDK4/6, MEK, and Combo), Day, Day², Day³ and interaction between treatment group and each power of the Day variable. That is, the Day-dependent trends were modeled as cubic polynomials in Day and coefficients for linear, quadratic, and cubic terms were allowed to be different in different treatment groups. The models also allowed for different variances of the errors in different treatment groups since even after the log transformation there were still heteroscedasticty in the errors from different treatment groups. The overall comparisons of the treatment groups (combo vs. single agents) were performed in terms of the time trends, testing the null hypotheses that the coefficients for linear, quadratic and cubic Day terms are equal for the corresponding treatment groups.

The derivative function (quadratic polynomial) for each treatment group was computed from the fitted cubic curve in each treatment group.

Pathway Analysis

ToppGene (accessed 21 March 2016) was used to determine statistically significant up and down regulated pathways for comparisons between each drug resistant group. Cumulative distribution function was used to calculate the statistical significance of pathways from the Reactome pathway database. Pathways were classified as significant by using a Benjamini Hochberg positive false discovery rate cutoff of 0.001.

Supplemental Figure Legends for Teh et al., "An *in vivo* reporter to quantitatively and temporally analyze the effects of CDK4/6 inhibitor-based therapies in melanoma."

Supplemental Table 1. Summary of melanoma cell lines grouped for mutations in CDKN2A, CDK4, BRAF and NRAS. ND: not determined.

Supplemental Figure 1. Low concentrations of palbociclib (0.05 μ M) inhibited phosphorylation of RB1 and cyclin A2 expression in sensitive cell lines (GI50<1.5 μ M) but not in less sensitive lines.

Supplemental Figure 2. Mean plasma concentration for palbociclib. Mice were treated with control chow or palbociclib for 8 or 15 days.

Supplemental Figure 3. Sensitivity of melanoma cells to trametinib. GI50 values were generated from dose-dependent curves from MTT cell viability assays. Each bar represents the average of three independent experiments.

Supplemental Figure 4. Enhanced PARP cleavage in BRAF and NRAS mutant cells treated with trametinib (5 nM) or trametinib plus palbociclib (0.5μ M).

Supplemental Figure 5. Clustergram and scatter plot generated from apoptosis PCR Array. A375 and SBcl2 cells were treated as indicated for 24 hours.

Supplemental Figure 6. Endogenous levels of survivin in a panel of melanoma cell lines.

Supplemental Figure 7. Representative tumor size of 1205Lu xenografts measured by tdTomato fluorescence activity (error bars represent SEM, *p<0.0001 comparing combo to control, CDK4/6i and MEKi).

Supplemental Figure 8. Average weight (g) of mice bearing 1205Lu xenografts treated in each cohort (n=6 in control, n=10 in MEKi, n=9 in CDK4/6i, n=9 in COMBOi, error bars represent SD). The weight was comparable between each treatment groups.

Supplemental Figure 9. Average weight (g) of mice bearing WM1366 xenografts treated in each cohort (n=5 in control, n=5 in MEKi, n=5 in CDK4/6i, n=6 in COMBOi, error bars represent SD). The weight was comparable between each treatment groups.

Supplemental Figure 10. Modulation of E2F activity in combination treated mice bearing WM1366 xenografts that did not show complete response.

Supplemental Figure 11. E2F reactivation in WM1366 xenografts precedes resistance to MEK inhibitor or CDK4/6 inhibitor as measured by tdTomato activity.

Supplemental Figure 12. Residual tdTomato signal (p/sec/cm²/sr) in 1205Lu tumors of mice showing complete response by lack of palpable tumor. These five mice were subsequently taken off combination chow treatments to monitor durable response.

Supplemental Figure 13. Two heat maps of the most significantly up (A) and down (B) regulated pathways for CDK-R vs MEK-R, Combo-R vs MEK-R and Combo-R vs CDK-R (pFDR < 0.001).

Supplemental Figure 14. Validation of proteins from the RPPA analysis heatmap in Figure 6.

Cell line	Palbociclib (GI50 μM)	CDKN2A (CNV and mutations)	CDK4 mutation	BRAF mutation	NRAS mutation	References
CHL-1	1.15	Mutated (W110Stop, LOF)	WT	WT	WT	Young RJ et al., 2014
BOWES	0.65	SNP	WT	WT	WT	
A375	1.26	Mutated (E61Stop, LOF)	WT	V600E	WT	Young RJ et al., 2014
WM793	3.7	WT	mutated (K22Q)	V600E	WT	Satyamoorthy et al., 1997
1205Lu	10	WT	mutated (K22Q)	V600E	WT	Satyamoorthy et al., 1997
SKMEL207	18.44	WT	mutated (R24C)	V600E	WT	Xing et al., 2012
SBcl2	10	ND	WT	WT	Q61K	Satyamoorthy et al., 1997
WM1366	3.88	ND	WT	WT	Q61L	Satyamoorthy et al., 1997

Time (days)

Supplemental Figure 13	A00		5	
	ADP signalling through P2Y purinoceptor 1			
	Activation of Gene Expression by SREBP (SREBF) Activation of the AP-1 family of transcription factors			
	Biotin transport and metabolism			
	CDO in myogenesis			
	Cellular Senescence Cellular responses to stress			
	ChREBP activates metabolic gene expression			
	Citric acid cycle (TCA cycle)			
	Destabilization of mRNA by KSRP			
	Disease			
	Dissolution of Fibrin Clot			
	Downstream signal transduction			
	ERK/MAPK targets			
	ERKs are inactivated Energy dependent regulation of mTOR by LKB1-AMPK			
	Fatty Acyl-CoA Biosynthesis			
	Fibronectin matrix formation Formation of annular gan junctions		_	
	Gap junction degradation			
	Glycogen synthesis			
	Import of palmitovl-CoA into the mitochondrial matrix			
	Inositol phosphate metabolism			
	Interleukin-6 signaling			
	Loss of Function of SMAD4 in Cancer			
	Loss of Function of TGFBR1 in Cancer			
	MAP kinase activation in TLR cascade			
	MAPK targets/ Nuclear events mediated by MAP kinases			
	Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane Myogenesis			
	NGF signalling via TRKA from the plasma membrane			
	NOD1/2 Signaling Pathway			
	Negative regulation of the PI3K/AKT network Nuclear Events (kinase and transcription factor activation)			
	Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signaling pathways			
	Oligomerization of connexins into connexons			
	Plak Cascade			
	PKB-mediated events			
	Platelet sensitization by LDL Pvruvate metabolism and Citric Acid (TCA) cycle			
	Regulation of AMPK activity via LKB1			
	Regulation of Cholesterol Biosynthesis by SREBP (SREBF)			
	Regulation of gap junction activity			
	S6K1 signalling			
	S6K1-mediated signalling SMAD2/3 MH2 Domain Mutants in Cancer			
	SMAD2/3 Phosphorylation Motif Mutants in Cancer			
	SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription SMAD4 MH2 Domain Mutants in Cancer			
	Signal Transduction			
	Signal amplification			
	Signaling by Activity Signaling by FGFR in disease			
	Signaling by FGFR mutants			
	Signaling by FGFR1 fusion mutants			
	Signaling by Leptin			
	Signaling by PDGF			
	Signaling by SCF-KIT Signaling by TGF-beta Receptor Complex			
	Signaling by TGF-beta Receptor Complex in Cancer			
	Signalling by NGF Signalling to ERKs			
	Signalling to RAS			
	Signalling to STAT3			
	Synthesis of IPS and IP4 in the cytosof Synthesis of PIPs at the plasma membrane			
	TGFBR1 KD Mutants in Cancer			
	TGFBR1 LBD Mutants in Cancer TGFBR2 Kinase Domain Mutants in Cancer			
	TGFBR2 MSI Frameshift Mutants in Cancer			
	Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer			
	Transport of connexons to the plasma membrane			
	Triglyceride Biosynthesis			
	Vitamin B5 (pantothenate) metabolism activated TAK1 mediates p38 MAPK activation			
	c-src mediated regulation of Cx43 function and closure of gap junctions			
	mTOR signalling			
	miORC1-mediated signalling p38MAPK events			
	u + + + + + + + + + + + + + + + +	0 0	Q	
			omb	
		R/M	ŏ-R	
		EK-	/CD	
		л К Л	Υ-R	

- log10(pFRD))		5
B			5
AKI phosphorylates targets in the cytosol			
AKT phosphorylates targets in the nucleus			
Activation of BAD and translocation to mitochondria			
CD28 co-stimulation			
CD28 dependent PI3K/Akt signaling			
CTI A4 inhibitory signaling			
Constitutive PI3K/AKT Signaling in Cancer			
Constitutive Signaling by NOTCH1 t(7:9)(NOTCH1:M1580 K2555) Translocation Mutant			
Costimulation by the CD28 family			
Cyclin A/B1 associated events during G2/M transition			
DAP12 interactions			
DAP12 signaling			
Destabilization of mRNA by Butyrate Response Factor 1 (BRF1)			
Destabilization of mRNA by KSRP			
Downregulation of ERBB2:ERBB3 signaling			
Downregulation of SMAD2/3:SMAD4 transcriptional activity			
Downstream Signaling Events Of B Cell Receptor (BCR)			
Downstream signal transduction			
Downstream signaling or activated FGFR			
EKKs are inactivated			
Fc epsilon receptor (FGERI) signaling			
GABT Signalosofile			
Inhibition of replication initiation of damaged DNA by RB1/E2E1			
MAD kingse activation in TLP caseade			
MAPK targets/ Nuclear events mediated by MAP kinases	-		
Metabolism of nitric oxide			
MvD88 dependent cascade initiated on endosome			
MyDee dependent cascade initiated on endeceme MyD88-independent cascade			
NGE signalling via TRKA from the plasma membrane			
Negative regulation of the PI3K/AKT network			
Nuclear Events (kinase and transcription factor activation)			
PI-3K cascade			
PI3K events in ERBB2 signaling			
PI3K events in ERBB4 signaling			
PI3K/AKT Signaling in Cancer			
PI3K/AKT activation			
PIP3 activates AKT signaling			
Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 complexes			
Polo-like kinase mediated events			
Regulation of gene expression in beta cells			
Release of eIF4E			
Role of LAT2/NTAL/LAB on calcium mobilization			
SHC1 events in ERBB2 signaling			
Signal Transduction			
Signaling by EGFR			
Signaling by EGFR in Cancer			
Signaling by ERBB2			
Signaling by ERBB4			
Signaling by FGFR			
Signaling by FGFR in disease			
Signaling by NODAL			
Signaling by NUTCH4			
Signaling by PDGF Signaling by SCE KIT			
Signaling by SCF-KT			
Signalling by the Brown Nebepton (BON)			
TRAF6 mediated induction of NEkB and MAP kinases upon TLR7/8 or 9 activation			
Tetrahydrohionterin (BH4) synthesis recycling salvage and regulation			
Toll Like Receptor 3 (TLR3) Cascade			
Toll Like Receptor 7/8 (TLR7/8) Cascade			
Toll Like Receptor 9 (TLR9) Cascade			
eNOS activation			
eNOS activation and regulation	_		
mTORC1-mediated signalling			
	8	8	8
	Ā	тb	Ш

mbo-R/CDK-R mbo-R/MEK-R IK-R/MEK-R

