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1 Degree of approximation due to ignoring

truncation

It is possible to calculate the exact mean of the random effects conditional

on Rit = 1 while explicitly accounting for the truncation. We start by trans-

forming bi into independent components, the first of which is a standardized

version of γ ′itbi, where both γit and bi are q× 1 column vectors. First define

γ̃1it = γit/
√

γ ′itΣbγit,

so that var(γ̃ ′1itbi | Rit = 1) = 1 and the truncation to keep the probabilities

less than or equal to 1 is given by

γ̃ ′1itbi < −µit/
√

γ ′itΣbγit ≡ −µ̃it. (1)

Next create q × 1 column vectors γ̃kit, k = 2, . . . , q, such that γ̃ ′kitΣbγ̃ lit =

I{k=l} and denote by Γ̃it the q × q matrix with rows equal to γ̃ ′kit. Via this

construction, the conditional distribution of Γ̃itb is given by

Γ̃itb | Rit = 1 ∼ N (Γ̃itΣbγit, I). (2)

Only the first component is subject to truncation because the truncation is

defined by (1) and the remaining components are independent of the first.
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Using the usual formula for the mean of a truncated normal we have

E[γ̃ ′1itbi | Rit = 1, γ̃ ′1itbi < −µ̃it] = γ̃ ′1itΣbγit

−φ(−µ̃it − γ̃ ′1itΣbγit)/Φ(−µ̃it − γ̃ ′1itΣbγit).

(3)

Define µΓ̃it to have first entry equal to (3) and remaining entries equal to the

corresponding entries of Γ̃itΣbγit. Then

E[Γ̃itbi | Rit = 1,γ ′itbi < −µit] = µΓ̃it (4)

and

E[bi | Rit = 1,γ ′itbi < −µit] = Γ̃
−1

it µΓ̃it. (5)

In cases where the second term in (3) is negligible we can ignore the effects of

truncation. This will be true when the value of µ̃it is negative and the values

of γit are small in relation to the absolute value of µ̃it. This occurs under

the scenarios we consider where the probability of any single visit is small

(so that µit is negative, but large in absolute value) and the informativeness

is not overly strong (so that the values of γit are not large in absolute value).
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2 Detailed simulation results

Details of the simulation methodology are given in the main paper. The

tables in this section give the estimated mean values of the parameters and

standard errors from the simulations and are more extensive than the graph-

ical results given in the main paper. They are organized first by the outcome

simulation process: linear mixed model or logistic mixed model. Within

the linear mixed model section they are next organized by the informative

visit process: conditional mean or random effects dependence. For the logit

link we report on only the conditional mean dependence. Individual tables

show the influence of varying the informativeness of the process as well as

the effect of the log versus the logit link for the informative visit process for

linear mixed models or the estimation method (maximum likelihood versus

generalized estimating equations) for the logistic outcome models.

The data were simulated using the following outcome process. Let Yit

represent the measurement at time t (where t runs from 1 to ni) on subject

i (where i runs from 1 to m). We assume that our outcome process follows

a generalized linear mixed model with normally distributed random effects,

bi:

Yit|bi ∼ independent fY i = 1, . . . ,m; t = 1, . . . , ni

g(E[Yit|bi]) = x′itβ + z′itbi (6)

bi ∼ i.i.d. N (0,Σb), (7)
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In this model, xit represents the covariates associated with subject i at time

t, β is the vector of covariate effects, zit is the model matrix for the random

effects, and g(·) is the link function (either linear or logit).

The simulations fit models only to the observed data, with Rit = 1, where

Rit is the binary indicator with Rit = 1 indicating that Yit is observed and is 0

otherwise. We assume that, conditional on the random effects, Yit and Rit are

independent (and independent from one another) and that the probability

that Rit = 1 is dependent on the random effects via a log link or a logit link:

P(Yit is observed | bi) ≡ P(Rit = 1 | bi)

= exp{µit + γ ′itbi} or

= 1/(1 + exp{−[µit + γ ′itbi}]). (8)

In this model, γit governs the strength and directionality of the association

between the random effects and whether or not data are observed.

2.1 Linear mixed model for the outcome

2.1.1 Conditional mean informative visit process
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Table 1:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + δE[Y |b],

Fitting method: maximum likelihood
Random effects: corr(b0i, b1i)=0

Informative Simulated mean parameter estimates
Visit Process (SEs as subscripts)

δ β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3) x2
1 coeff.

log link

0 0.0010.004 0.9850.010 1.9950.003 3.0040.010 −0.0310.035

0.25 0.2350.004 0.9850.010 1.9970.003 3.0090.010 0.2270.031

0.50 0.4420.004 0.9870.012 1.9530.004 2.9750.012 0.5290.026

0.75 0.5950.004 0.9340.012 1.8620.004 2.9430.013 0.6630.017

logit link

0 0.0000.004 0.9840.010 1.9950.003 3.0030.010 −0.0270.035

0.25 0.2350.004 0.9820.010 1.9960.003 3.0080.010 0.2220.031

0.50 0.4400.004 0.9780.012 1.9500.004 2.9650.012 0.4930.027

0.75 0.6000.004 0.9120.012 1.8590.004 2.9290.013 0.5430.018
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Table 2:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + δE[Y |b],

Fitting method: GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0

Informative Simulated mean parameter estimates
Visit Process (SEs as subscripts)

δ β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3) x2
1 coeff.

log link

0 0.0000.004 0.9820.010 1.9940.003 3.0060.010 −0.0220.035

0.25 0.2510.004 0.9860.010 2.0040.003 3.0140.010 0.2340.032

0.50 0.4990.004 0.9990.012 1.9960.004 2.9900.012 0.5640.028

0.75 0.7560.004 0.9780.013 1.9980.004 3.0000.013 0.6190.017

logit link

0 0.0000.004 0.9810.010 1.9940.003 3.0050.010 −0.0200.035

0.25 0.2490.004 0.9830.010 2.0030.003 3.0010.011 0.2300.032

0.50 0.4940.004 0.9810.012 1.9890.004 2.9730.012 0.5080.029

0.75 0.7400.004 0.8990.013 1.9690.004 2.9370.013 0.4310.020
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Table 3:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + δE[Y |b],

Fitting method: maximum likelihood
Random effects: corr(b0i, b1i)=0.5

Informative Simulated mean parameter estimates
Visit Process (SEs as subscripts)

δ β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3) x2
1 coeff.

log link

0 0.0060.004 0.9970.010 1.9990.003 2.9990.010 −0.0500.037

0.25 0.2350.004 1.2210.010 1.9930.003 3.0190.011 0.2130.032

0.50 0.4440.004 1.4090.011 1.9500.004 2.9440.012 0.4450.026

0.75 0.5970.004 1.4980.013 1.8440.004 2.8030.013 0.4720.017

logit link

0 0.0060.004 0.9970.010 1.9990.003 2.9960.010 −0.0570.038

0.25 0.2330.004 1.2160.010 1.9930.003 3.0220.011 0.2130.033

0.50 0.4420.004 1.3950.011 1.9470.004 2.9310.012 0.4040.026

0.75 0.6010.004 1.4700.013 1.8430.004 2.7880.013 0.3680.018
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Table 4:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + δE[Y |b],

Fitting method: GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0.5

Informative Simulated mean parameter estimates
Visit Process (SEs as subscripts)

δ β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3) x2
1 coeff.

log link

0 0.0060.004 0.9940.010 2.0000.003 2.9970.010 −0.0550.037

0.25 0.2490.004 1.2360.010 2.0010.003 3.0320.011 0.2330.033

0.50 0.5020.004 1.4920.011 2.0000.004 3.0080.012 0.5100.028

0.75 0.7790.005 1.7010.013 1.9920.004 2.9890.014 0.3440.020

logit link

0 0.0060.004 0.9950.010 2.0000.003 2.9970.010 −0.0560.037

0.25 0.2470.004 1.2340.010 2.0000.003 3.0300.011 0.2200.033

0.50 0.4980.005 1.4600.011 1.9910.004 2.9820.012 0.4280.029

0.75 0.7570.005 1.5860.013 1.9580.004 2.8870.014 0.1780.021

10



2.1.2 Random effects informative visit process

Table 5:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + γ0b0 + γ1b1,

Fitting method: maximum likelihood
Random effects: corr(b0i, b1i)=0

Info Visit Process Simulated mean parameter estimates (SEs as subscripts)
γ0 γ1 β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3)

log link

0 0 0.0100.005 0.9860.009 1.9850.007 3.0100.012

0.5 0 0.4350.005 0.9570.008 2.0060.006 2.9970.011

1 0 0.8240.005 0.9010.008 1.9890.006 3.0080.011

0 0.5 −0.0530.005 1.5260.008 2.0000.007 3.0000.012

0.5 0.5 0.3600.005 1.4930.008 1.9980.007 3.0020.012

1 0.5 0.7340.005 1.4180.008 1.9970.007 3.0010.011

0 1 −0.1280.005 2.0260.008 2.0050.007 2.9960.011

0.5 1 0.2670.005 1.9780.009 2.0010.007 2.9990.008

1 1 0.6380.005 1.8840.008 1.9950.007 3.0060.011

logit link

0 0 0.0100.005 0.9860.009 1.9850.007 3.0110.012

0.5 0 0.4280.005 0.9590.008 2.0060.006 2.9950.011

1 0 0.8100.005 0.9090.008 1.9890.006 3.0090.011

0 0.5 −0.0520.005 1.5150.008 2.0010.007 2.9990.012

0.5 0.5 0.3580.005 1.4790.008 1.9980.007 3.0030.012

1 0.5 0.7270.005 1.4070.008 1.9950.007 3.0060.011

0 1 −0.1170.005 1.9940.009 2.0030.007 3.0040.011

0.5 1 0.2730.005 1.9480.009 2.0000.007 2.9970.011

1 1 0.6370.005 1.8610.008 1.9950.007 3.0040.011
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Table 6:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + γ0b0 + γ1b1,

Fitting method: GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0

Info Visit Process Simulated mean parameter estimates (SEs as subscripts)
γ0 γ1 β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3)

log link

0 0 0.0130.005 0.9810.009 1.9830.007 3.0140.012

0.5 0 0.4990.005 0.9980.009 2.0060.007 2.9980.013

1 0 1.0040.005 0.9970.009 1.9860.007 3.0160.012

0 0.5 0.0030.005 1.4960.009 2.0010.007 2.9970.012

0.5 0.5 0.4990.005 1.4980.009 1.9980.007 3.0080.013

1 0.5 0.9910.005 1.5040.009 1.9960.008 3.0050.012

0 1 0.0080.005 1.9860.009 1.9960.007 3.0170.012

0.5 1 0.4980.005 2.0080.010 2.0020.008 2.9940.013

1 1 0.9840.006 1.9730.008 1.9910.008 3.0220.012

logit link

0 0 0.0120.005 0.9820.009 1.9830.007 3.0150.012

0.5 0 0.4880.005 0.9960.009 2.0060.007 2.9970.013

1 0 0.9620.005 0.9990.009 1.9850.007 3.0170.012

0 0.5 0.0030.005 1.4850.009 2.0010.007 2.9960.013

0.5 0.5 0.4870.005 1.4800.009 1.9970.007 3.0090.013

1 0.5 0.9440.005 1.4770.009 1.9940.008 3.0100.012

0 1 0.0080.005 1.9450.009 1.9970.007 3.0160.013

0.5 1 0.4740.005 1.9570.010 2.0000.008 2.9980.013

1 1 0.9200.005 1.9140.009 1.9910.008 3.0190.013
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Table 7:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + γ0b0 + γ1b1,

Fitting method: maximum likelihood
Random effects: corr(b0i, b1i)=0.5

Info Visit Process Simulated mean parameter estimates (SEs as subscripts)
γ0 γ1 β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3)

log link

0 0 0.0040.005 0.9970.009 1.9990.007 3.0000.013

0.5 0 0.4080.005 1.2020.009 2.0000.007 3.0070.012

1 0 0.7720.005 1.3480.008 2.0020.006 2.9810.011

0 0.5 0.1580.005 1.4900.009 2.0040.007 3.0110.012

0.5 0.5 0.5390.005 1.6610.008 1.9950.006 3.0090.012

1 0.5 0.8630.005 1.7790.008 2.0040.006 3.0000.011

0 1 0.2810.005 1.9630.009 1.9970.007 2.9970.012

0.5 1 0.6220.005 2.0870.009 1.9930.007 3.0010.011

1 1 0.9350.005 2.1600.008 2.0010.007 3.0040.012

logit link

0 0 0.0020.005 0.9990.009 2.0020.007 2.9950.013

0.5 0 0.4030.005 1.1970.009 1.9970.007 3.0120.012

1 0 0.7610.005 1.3470.008 2.0020.007 2.9810.011

0 0.5 0.1560.005 1.4820.009 2.0020.007 3.0120.012

0.5 0.5 0.5330.005 1.6480.008 1.9940.006 3.0120.012

1 0.5 0.8530.005 1.7740.009 20060.006 2.9950.012

0 1 0.2830.005 1.9410.009 1.9990.007 2.9940.012

0.5 1 0.6220.005 2.0620.009 1.9910.007 3.0040.012

1 1 0.9340.005 2.1370.009 2.0020.007 3.0050.012
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Table 8:
Outcome model: linear mixed model
Informative visit model:
log(P (Rit = 1)) or logit(P (Rit = 1)) = −5 + γ0b0 + γ1b1,

Fitting method: GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0.5

Info Visit Process Simulated mean parameter estimates (SEs as subscripts)
γ0 γ1 β0 (true=0) β1 (true=1) β2 (true=2) β3 (true=3)

log link

0 0 0.0060.005 0.9930.009 1.9990.007 2.9980.014

0.5 0 0.4970.006 1.2520.010 1.9950.007 3.0180.013

1 0 0.9960.005 1.5080.009 2.0020.008 2.9710.013

0 0.5 0.2480.005 1.4900.010 2.0050.007 3.0110.014

0.5 0.5 0.7560.005 1.7450.009 1.9950.007 3.0010.014

1 0.5 1.2450.006 1.9780.009 1.9970.008 3.0000.013

0 1 0.5060.006 1.9940.010 1.9970.008 2.9970.014

0.5 1 0.9950.006 2.2310.010 1.9870.008 3.0080.014

1 1 1.4260.006 2.43‘0.010 2.0000.009 3.0040.014

logit link

0 0 0.0050.005 0.9950.009 2.0000.007 2.9950.014

0.5 0 0.4870.006 1.2440.010 1.9940.008 3.0190.014

1 0 0.9570.005 1.4840.010 1.9990.007 2.9760.013

0 0.5 0.2420.005 1.4780.010 2.0050.007 3.0110.014

0.5 0.5 0.7290.005 1.7190.009 1.9960.007 3.0010.014

1 0.5 1.1680.005 1.9220.010 2.0000.008 2.9970.014

0 1 0.4870.006 1.9540.010 1.9990.008 2.9950.014

0.5 1 0.9350.006 2.1590.010 1.9880.008 3.0090.014

1 1 1.3270.006 2.3190.011 1.9980.008 3.0100.015
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2.2 Logistic mixed model for the outcome

2.2.1 Conditional mean informative visit process

Table 9:
Outcome model: logistic mixed model
Informative visit model: logit(P (Rit = 1)) = −1 + δE[Y |b],
Fitting method:

maximum likelihood or GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0

Visit Simulated mean parameter estimates
Parameter (SEs as subscripts)

δ β0 (true=-1) β1 (true=0.5) β2 (true=1) β3 (true=0.5) x2
1 coeff.

ML

0 −1.0010.003 0.4990.006 1.0050.002 0.5020.006 −0.0020.017

0.25 −0.8500.003 0.4970.006 0.9860.002 0.4960.006 0.1650.018

0.50 −0.6940.003 0.4780.006 0.9430.002 0.4850.007 0.3590.018

0.75 −0.5290.003 0.4610.007 0.8870.002 0.4610.007 0.4390.018

GEE

0 −0.8430.002 0.4040.004 0.8370.002 0.4020.004 0.0810.014

0.25 −0.6760.002 0.3970.005 0.8240.002 0.4020.004 0.1830.015

0.50 −0.5140.002 0.3830.005 0.7940.002 0.3900.005 0.3030.015

0.75 −0.3550.003 0.3640.006 0.7560.002 0.3680.005 0.3320.014
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Table 10:
Outcome model: logistic mixed model
Informative visit model: logit(P (Rit = 1)) = −1 + δE[Y |b],
Fitting method:

maximum likelihood or GEE (independence working correlation)
Random effects: corr(b0i, b1i)=0.5

Visit Simulated mean parameter estimates
Parameter (SEs as subscripts)

δ β0 (true=-1) β1 (true=0.5) β2 (true=1) β3 (true=0.5) x2
1 coeff.

ML

0 −1.0030.003 0.5110.006 1.0040.002 0.4960.006 0.0130.017

0.25 −0.8510.003 0.6420.006 0.9800.002 0.4770.006 0.1920.017

0.50 −0.6870.003 0.7830.007 0.9400.002 0.4180.006 0.2680.019

0.75 −0.5360.003 0.8770.007 0.8890.003 0.3440.007 0.3540.019

GEE

0 −0.8450.002 0.5270.004 0.8360.002 0.2900.004 0.0060.014

0.25 −0.6780.002 0.6500.005 0.8170.002 0.2720.005 0.1060.015

0.50 −0.5100.002 0.7560.005 0.7920.002 0.2400.005 0.1300.016

0.75 −0.3580.003 0.8230.005 0.7560.002 0.1890.005 0.1590.015
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3 Additional dependence on the covariates

The log link informative visit process allows arbitrary dependence on the

covariates since they can be incorporated in the µit portion of equation (3).

The theory in Section 3.2 shows that the marginal distribution is unaffected

by µit and hence dependence on covariates does not influence the marginal

distribution. To check whether this result carries over to the logistic link

visit process, (30), we redid the simulation of Figure 1, but modified the

informative visit process to allow additional dependence on the covariates.

We simulated the realistic situation where the visit probability differs by the

group variable in (19), x2. Specifically, we considered a modification of (21):

logit P(Rit = 1 | bi) = µ+ δE[Yit|bi] + λx2. (9)

Figure 1 shows the results for the linear mixed model under the condi-

tional mean informative visit model with additional covariates, (9), using

maximum likelihood to fit the model. Each panel includes four curves, cor-

responding to values of λ ranging from 0 to 0.75 in steps of 0.25. All of

the curves lie nearly on top of one another demonstrating there is, at most,

minor effect on the means values and that is restricted to those cases with

strongly informative visit processes (e.g., δ and λ greater than 0.25).

Figure 2 shows similar results when the linear mixed model is fit using

generalized estimating equations. Again, all of the curves lie nearly on top

of one another, demonstrating the minor effect of dependence of the visit
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Figure 1: Simulated mean values of the maximum likelihood regression co-
efficient estimators. Simulated under a conditional mean informative visit
process with a logit link, i.e., logit(P (Rit = 1)) = −5 + δE[Y | b] + λx2,
and linear mixed outcome model with random intercepts and slopes. Curves
within each panel show the results as λ ranges from 0 to 0.75.
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Figure 2: Simulated mean values of the generalized estimating equations
regression coefficient estimators. Simulated under a conditional mean infor-
mative visit process with a logit link, i.e., logit(P (Rit = 1)) = −5 + δE[Y |
b]+λx2, and linear mixed outcome model with random intercepts and slopes.
Curves within each panel show the results as λ ranges from 0 to 0.75.
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process on the covariate, x2.

4 Theory for dependence on random inter-

cept or random slope only

In this section we consider an informative visit process where the probability

of observing Y depends only on the random intercept, b0i:

P(Yit is observed | bi) ≡ P(Rit = 1 | bi) = exp{µ+ γ0b0i}, (10)

so that γTit = (γ0 0). For the above model and using the results of Section 3

of the manuscript, the expected value of the linear predictor conditional on

being observed is equal to

xTitβ + zTitΣbγit = β0 + β1x1it + β2x2i + β3x3it + σ2
0γ0 + σ01γ0x1it

= (β0 + σ2
0γ0) + (β1 + σ01γ0)x1it + β2x2i + β3x3it.

This result indicates that fitting the usual model to observed data will result

in a biased estimate of the intercept, with bias equal to σ2
0γ0 and a biased

estimate of β1 with bias equal to σ01γ0. So, even though the informative

visit process depends only on the random intercept, estimators of β1 will be

biased if the random intercept and slope are correlated.

A similar result holds for the random slope when P(Rit = 1 | bi) =
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exp{µ + γ1b1i}. Estimators of β1 will be biased by σ2
1γ1 and the intercept

will be biased by σ01γ1 if the random intercept and slope are correlated.

In either case, we can obtain consistent estimates of the coefficients un-

connected to the random effects, β2 and β3, using estimation methods that

ignore the informative visit process. This can be achieved, for example,

by using an analysis that only requires correct specification of the marginal

mean.
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