1 Supplementary figures

Figure Sf1: A scheme of building a protein descriptor

Figure Sf2: Visualization of an example group of descriptors. The group consists of eight descriptors including the founder, which is marked with black. The visualization of a superposition of descriptors is presented in the following views: the descriptor backbones only (on the left) and the cartoon view (on the right)

Figure Sf3: Visualization of instances of the problem and the corresponding optimal solutions. First two rows present descriptors that are compared and the third one is for their optimal structural alignment

Figure Sf4: Visualization of structural motifs constructed in the proximity of residue A123-VAL (d1e0ta1) according to the building concept of descriptors taking into consideration the following values of element size: 3 [ES1], 5 [ES2], 7 [ES3], as well as two general types of expressions for identification of incontact residues, namely "OR(DISTANCE:CBX \leq 6.5, AND(DISTANCE:CBX \leq DISTANCE:CA – 0.75, DISTANCE:CBX \leq 8.0))" [EXP1] and "OR(DISTANCE:SCGC \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:SCGC \leq 8.0))" [EXP2]. In these expressions, the following residue representatives are used: CA (C_{α}), CBX (C_{β}-extended point) (Hvidsten, Kryshtafovych and Fidelis, 2009), and SCGC (geometrical center of side-chain). Table St6 contains detailed information about the structural motifs. (A) Visualization prepared for parameters ES1, EXP1, (B) ES2, EXP1, (C) ES3, EXP1, (D) ES1, EXP2, (E) ES2, EXP2, (F) ES3, EXP2. (G) Visualization of superimposed 3D structures of motifs from figures A and D, (H) B and E, (I) C and F

Figure Sf5: Visualization of structural motifs constructed in the proximity of residue A30-PHE (d2f5ya1) according to the building concept of descriptors taking into consideration the following values of element size: 3 [ES1], 5 [ES2], 7 [ES3], as well as two general types of expressions for identification of incontact residues, namely "OR(DISTANCE:CBX \leq 6.5, AND(DISTANCE:CBX \leq DISTANCE:CA – 0.75, DISTANCE:CBX \leq 8.0))" [EXP1] and "OR(DISTANCE:SCGC \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:SCGC \leq 8.0))" [EXP2]. In these expressions, the following residue representatives are used: CA (C_{α}), CBX (C_{β}-extended point) (Hvidsten, Kryshtafovych and Fidelis, 2009), and SCGC (geometrical center of side-chain). Table St7 contains detailed information about the structural motifs. (A) Visualization prepared for parameters ES1, EXP1, (B) ES2, EXP1, (C) ES3, EXP1, (D) ES1, EXP2, (E) ES2, EXP2, (F) ES3, EXP2. (G) Visualization of superimposed 3D structures of motifs from figures A and D, (H) B and E, (I) C and F

Figure Sf6: Visualization of 3D structures of descriptors constructed in the proximity of three example residues, namely A123-VAL (d1e0ta1) [RES1], A30-PHE (d2f5ya1) [RES2], and A2309-VAL (d2w0pa1) [RES3] by various expressions for identification of in-contact residues published in the literature. They are "DIS-TANCE:CBX < 6.5" (Hvidsten *et al.*, 2003; Hvidsten, Laegreid *et al.*, 2009) [EXP1, in blue], "OR(DISTANCE:CBX < 6.5, AND(DISTANCE:CBX < DISTANCE:CA – 0.75, DISTANCE:CBX < 8.0))" (Hvidsten, Kryshtafovych and Fidelis, 2009) [EXP2, in orange], "OR(DISTANCE:CA \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:CBX < 8.0))" (Daniluk and Lesyng, 2011) [EXP3, in magenta]. In these expressions, the following residue representatives are used: CA (C_{α}), CBX (C_{β}-extended point), and SCGC (geometrical center of side-chain). Table St8 contains detailed information about the descriptors. (A) Visualization prepared for parameters RES1, EXP1, (B) RES2, EXP1, (C) RES3, EXP1, (D) RES1, EXP2, (E) RES2, EXP2, (F) RES3, EXP2, (G) RES1, EXP3, (H) RES2, EXP3, (I) RES3, EXP3. (J–L) Visualization of superimposed 3D structures presented above

Figure Sf7: Visualization of structural alignments computed for descriptor pair d2cqca1_A_134_LEU, d1u2fa_A_18_MET. It is one of the most computationally interesting pairs listed in Table St5. The descriptors are composed of 11 elements. The tertiary structure of descriptor d2cqca1_A_134_LEU is depicted in green, and the corresponding structural alignment of descriptor d1u2fa_A_18_MET obtained because of the application of considered algorithms is depicted in magenta, orange, and blue, respectively. Table St9 contains detailed information about the descriptors and the resultant alignments. (A) Result of Algorithm 2 executed with the threshold parameter f = 1.75. (B) Result of Algorithm 3 executed with f = 1.75. (C) Result of Algorithm 4. (D) Visualization of all superimposed structural alignments of descriptor d1u2fa_A_18_MET

2 Detailed results

			Algorithm 1	(1.75)			
	coverage		higher global		global RMSD [Å]		
descriptor	of similar	quality	RMSD,	lower			
elements	descriptor	identity	equal residues	residues	avg.	std. dev.	
count	pairs [%]	[%]	ratio [%]	ratio [%]			
3	36.47	100.00	0.00	0.00	1.50	0.33	
4	52.00	100.00	0.00	0.00	1.76	0.45	
5	86.97	92.75	1.93	5.31	2.02	0.58	
6	83.33	92.50	2.50	5.00	1.96	0.58	
7	85.32	100.00	0.00	0.00	2.03	0.56	
8	82.05	96.88	1.04	2.08	2.15	0.49	
9	80.79	96.95	1.22	1.83	2.03	0.57	
10	61.71	94.44	3.24	2.31	2.39	0.60	
11	66.75	94.31	2.85	2.85	2.26	0.52	

Table St1:	Summarv	of	solutions	quality	for	Algorithm	1
				1		0	

			Algorithm 1	(2.0)			
	coverage		higher global		global RMSD [Å]		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	47.35	100.00	0.00	0.00	1.65	0.41	
4	72.00	100.00	0.00	0.00	1.98	0.55	
5	93.70	95.96	1.79	2.24	2.15	0.65	
6	90.28	96.15	2.31	1.54	2.10	0.67	
7	88.99	97.94	1.03	1.03	2.09	0.59	
8	88.03	97.09	0.97	1.94	2.25	0.56	
9	86.70	98.86	1.14	0.00	2.13	0.63	
10	62.86	96.82	3.18	0.00	2.42	0.62	
11	67.93	96.15	2.45	1.40	2.29	0.54	

			Algorithm 1	(2.33)			
	coverage		higher global		global RMSD [Å		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	70.88	100.00	0.00	0.00	1.99	0.60	
4	92.00	100.00	0.00	0.00	2.20	0.65	
5	91.60	96.79	1.83	1.38	2.15	0.66	
6	90.97	97.71	2.29	0.00	2.12	0.69	
7	88.99	100.00	0.00	0.00	2.10	0.61	
8	85.47	99.00	1.00	0.00	2.24	0.56	
9	87.19	98.87	1.13	0.00	2.14	0.64	
10	62.29	96.79	3.21	0.00	2.42	0.62	
11	67.70	96.84	2.46	0.70	2.28	0.54	

			Algorithm 2	(1.75)			
	coverage		higher global		global RMSD $[{\rm \AA}]$		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	36.47	100.00	0.00	0.00	1.50	0.33	
4	52.00	100.00	0.00	0.00	1.76	0.45	
5	88.24	92.38	1.90	5.71	2.02	0.58	
6	84.72	92.62	2.46	4.92	1.95	0.58	
7	88.99	100.00	0.00	0.00	2.02	0.55	
8	86.32	95.05	0.99	3.96	2.12	0.50	
9	85.22	95.38	2.31	2.31	2.04	0.57	
10	75.43	92.05	4.17	3.79	2.35	0.58	
11	79.33	91.62	3.89	4.49	2.26	0.51	

Table St2: Summary of solutions quality for Algorithm 2

			Algorithm 2	(2.0)			
	coverage		higher global		global RMSD [Å]		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	47.35	100.00	0.00	0.00	1.65	0.41	
4	72.00	100.00	0.00	0.00	1.98	0.55	
5	96.64	95.65	1.74	2.61	2.13	0.64	
6	93.75	96.30	2.22	1.48	2.09	0.66	
7	96.33	98.10	0.95	0.95	2.09	0.59	
8	97.44	95.61	0.88	3.51	2.23	0.56	
9	94.09	96.34	2.62	1.05	2.14	0.63	
10	86.00	90.37	4.98	4.65	2.45	0.60	
11	86.70	91.78	3.56	4.66	2.32	0.54	

			Algorithm 2	(2.33)			
	coverage		higher global		global RMSD $[Å]$		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	70.88	100.00	0.00	0.00	1.99	0.60	
4	92.00	100.00	0.00	0.00	2.20	0.65	
5	96.64	96.52	1.74	1.74	2.14	0.65	
6	95.14	97.81	2.19	0.00	2.11	0.68	
7	97.25	99.06	0.94	0.00	2.11	0.60	
8	97.44	97.37	0.88	1.75	2.23	0.56	
9	95.07	96.37	2.59	1.04	2.15	0.63	
10	88.86	89.39	5.47	5.14	2.48	0.61	
11	88.84	91.44	3.74	4.81	2.35	0.55	

			Algorithm 3	(1.75)			
	coverage		higher global		global RMSD [Å]		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	36.47	100.00	0.00	0.00	1.50	0.33	
4	52.00	100.00	0.00	0.00	1.76	0.45	
5	89.50	91.55	2.35	6.10	2.02	0.58	
6	88.89	87.50	4.69	7.81	2.01	0.61	
7	90.83	97.98	1.01	1.01	2.03	0.56	
8	92.31	90.74	2.78	6.48	2.17	0.53	
9	89.16	92.82	3.87	3.31	2.08	0.58	
10	91.43	83.13	10.00	6.88	2.51	0.62	
11	93.11	85.20	5.10	9.69	2.36	0.55	

Table St3: Summary of solutions quality for Algorithm 3

			Algorithm 3	(2.0)			
	coverage		higher global		global RMSD [Å]		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	47.35	100.00	0.00	0.00	1.65	0.41	
4	72.00	100.00	0.00	0.00	1.98	0.55	
5	97.06	95.24	2.16	2.60	2.14	0.65	
6	96.53	92.81	4.32	2.88	2.13	0.68	
7	96.33	98.10	0.95	0.95	2.09	0.59	
8	97.44	93.86	2.63	3.51	2.23	0.57	
9	97.04	94.92	3.55	1.52	2.17	0.63	
10	92.29	85.76	9.29	4.95	2.52	0.62	
11	95.25	88.53	4.99	6.48	2.38	0.56	

			Algorithm 3	(2.33)			
	coverage		higher global		global RMSD [Å]		
descriptor elements count	of similar descriptor pairs [%]	quality identity [%]	RMSD, equal residues ratio [%]	lower residues ratio [%]	avg.	std. dev.	
3	70.88	100.00	0.00	0.00	1.99	0.60	
4	92.00	100.00	0.00	0.00	2.20	0.65	
5	97.06	96.10	2.16	1.73	2.15	0.66	
6	97.22	95.00	4.29	0.71	2.15	0.70	
7	97.25	99.06	0.94	0.00	2.11	0.61	
8	97.44	94.74	2.63	2.63	2.23	0.57	
9	98.03	94.97	3.52	1.51	2.18	0.64	
10	92.29	86.07	9.29	4.64	2.52	0.62	
11	95.49	89.05	4.73	6.22	2.38	0.56	

Table St4: Top 10 computationally expensive descriptor pairs (of longest processing times of structural comparison done by Algorithm 4). The descriptors were generated with the following expression for identification of in-contact residues: OR(DISTANCE:SCGC \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:SCGC \leq 8.0)). The structural comparisons were performed with CA (C_{α}) and SCGC (geometrical center of side-chain) as representative atom names. All descriptors are composed of 11 elements

descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d1x5oa1_A_46_LEU d2cpza1_A_421_PHE	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \\ 1.92 \end{array}$	$7 \\ 8 \\ 7 \\ 39 \\ 39 \\ 40 \\ 146 \\ 147 \\ 148 \\ 4526764$	dlqg3al_A_1183_LEU d2cuhal_A_63_LEU	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	- 81.82 81.82 81.82 81.82 81.82 81.82 81.82 90.91	- 82.93 82.93 82.93 82.93 82.93 82.93 82.93 95.12	$\begin{array}{c} - \\ - \\ 2.14 \\ 2.14 \\ 2.14 \\ 2.14 \\ 2.14 \\ 2.14 \\ 2.14 \\ 2.14 \\ 3.29 \end{array}$	762947481441491492337319
descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d1x4aa1_A_39_ILE d2cpea1_A_377_LEU	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \\ 2.01 \end{array}$	$7 \\ 7 \\ 41 \\ 41 \\ 42 \\ 150 \\ 151 \\ 150 \\ 2227151$	d1g90a_A_59_LEU d1wf8a1_A_65_ILE	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \end{array}$	773839391501491522121192
descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d2cdqa2_A_344_LEU d2hmfa3_A_321_ILE	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	- - - - - - - - - - - - - - - - - - -	- 79.07 79.07 79.07 79.07 79.07 79.07 79.07 83.72	$\begin{array}{c} - \\ - \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.15 \\ 3.01 \end{array}$	$ \begin{array}{c} 6 \\ 7 \\ 26 \\ 44 \\ 44 \\ 144 \\ 151 \\ 150 \\ 2113848 \end{array} $	d1fnha2_A_150_ILE d2fnbaA_64_VAL	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88	$egin{array}{c} 6 \\ 6 \\ 39 \\ 39 \\ 39 \\ 168 \\ 168 \\ 168 \\ 168 \\ 2005195 \end{array}$
descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d1cwva1_A_524_VAL d2h26a1_A_206_CYS	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	- - 81.82 81.82 81.82 90.91 90.91 90.91 90.91	$\begin{array}{c} - \\ - \\ 90.00 \\ 90.00 \\ 90.00 \\ 95.00 \\ 95.00 \\ 95.00 \\ 95.00 \\ 95.00 \end{array}$	$\begin{array}{c} - \\ - \\ 2.05 \\ 2.05 \\ 2.05 \\ 3.19 \\ 3.19 \\ 3.19 \\ 2.99 \end{array}$	$9 \\ 10 \\ 9 \\ 29 \\ 47 \\ 46 \\ 149 \\ 153 \\ 159 \\ 1951039$	dlfc6a3_A_199_ILE dlrzxa_A_218_VAL	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\\ 1.70\end{array}$	$\begin{array}{c} 6\\ 7\\ 6\\ 38\\ 39\\ 39\\ 150\\ 151\\ 150\\ 1896075 \end{array}$
descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d2cqca1_A_134_LEU d1x4aa1_A_39_ILE	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\\ 1.86\end{array}$	$ \begin{array}{r} 10\\ 10\\ 42\\ 41\\ 42\\ 152\\ 152\\ 152\\ 1616547\\ \end{array} $	d1cvja1_A_27_LEU d2cqca1_A_134_LEU	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \\ 1.91 \end{array}$	773838381461471491424952

Table St5: Some of the most computationally interesting descriptor pairs, i.e., the ones of the greatest variability within the algorithms' output (in the sense of aligned residues). Each descriptor size (number of its elements) is represented by one pair. The descriptors were generated with the following expression for identification of incontact residues: OR(DISTANCE:SCGC ≤ 6.5 , AND(DISTANCE:SCGC $\leq DISTANCE:CA - 0.75$, DISTANCE:SCGC ≤ 8.0)). The structural comparisons were performed with CA (C_{α}) and SCGC (geometrical center of side-chain) as representative atom names

descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
_A_199_THR _E_111_SER (3)	$ \begin{array}{c} 1 (1.75) \\ 1 (2.0) \\ 1 (2.33) \\ 2 (1.75) \\ 2 (2.0) \\ 2 (2.33) \\ 3 (1.75) \end{array} $	- 100.00 100.00 - 100.00 100.00	- 100.00 100.00 - 100.00 100.00 -	- 2.23 2.23 - 2.23 2.23 2.23 -	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 1 \\ 8 \\ 8 \\ 4 \end{array} $.A.93.ARG .A.43.GLU (4)	$ \begin{array}{c} 1 (1.75) \\ 1 (2.0) \\ 1 (2.33) \\ 2 (1.75) \\ 2 (2.0) \\ 2 (2.33) \\ 3 (1.75) \end{array} $	- 100.00 100.00 - 100.00 100.00	- 100.00 100.00 - 100.00 100.00 -	- 2.54 2.54 - 2.54 2.54 2.54	$ \begin{array}{c} 1 \\ 5 \\ 5 \\ 1 \\ 9 \\ 9 \\ 7 \\ 7 \end{array} $
d3b5ha1 d1lp9e1.	$ \begin{array}{c} 3 (2.0) \\ 3 (2.33) \\ 4 \end{array} $	100.00 100.00 100.00	100.00 100.00 100.00	2.23 2.23 2.23	10 10 6	d3deoa1 d1tvxa_	$ \begin{array}{c} 3 (2.0) \\ 3 (2.33) \\ 4 \end{array} $	$ 100.00 \\ 100.00 \\ 100.00 $	100.00 100.00 100.00	$2.54 \\ 2.54 \\ 2.54$	15 14 7
descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
YS LEU (5)	$ \begin{array}{c} 1 (1.75) \\ 1 (2.0) \\ 1 (2.33) \\ 2 (1.75) \end{array} $	- 80.00 100.00 -	- 73.68 100.00 -	$\begin{array}{c} -\\ 2.50\\ 3.38\\ -\end{array}$	1 5 5 1	HR ALA (6)	$ \begin{array}{c} 1 (1.75) \\ 1 (2.0) \\ 1 (2.33) \\ 2 (1.75) \end{array} $	- 83.33 100.00 -	- 90.00 100.00 -	2.76 3.06	1 6 7 1
n4naA_4_L j0wa3_A_388	$ \begin{array}{c} 2 (2.0) \\ 2 (2.33) \\ 3 (1.75) \\ 3 (2.0) \\ 3 (2.33) \end{array} $	80.00 100.00 80.00 80.00 100.00	$73.68 \\ 100.00 \\ 73.68 \\ 73.68 \\ 100.00$	$2.50 \\ 3.38 \\ 2.50 \\ 2.50 \\ 3.38$	$\begin{array}{c} 4\\ 9\\ 14\\ 18\\ 27\end{array}$	hjqa2_A_3_T g2913_1_250_	$\begin{array}{c} 2 (2.0) \\ 2 (2.33) \\ 3 (1.75) \\ 3 (2.0) \\ 3 (2.33) \end{array}$	83.33 100.00 83.33 83.33 100.00	$90.00 \\ 100.00 \\ 90.00 \\ 90.00 \\ 100.00$	$2.76 \\ 3.06 \\ 2.76 \\ 2.76 \\ 3.06$	$ \begin{array}{r} 10 \\ 16 \\ 27 \\ 38 \\ 50 \\ \end{array} $
d1 d2	4	100.00	100.00	3.38	29	d1 d1	4	100.00	100.00	3.06	57
descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d2fkla1_A_153_VAL d2fkla1_A_157_THR (7)	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	- 85.71 100.00 - 85.71 100.00 85.71 85.71 100.00 100.00	$\begin{array}{c} -\\ 85.19\\ 100.00\\ -\\ 85.19\\ 100.00\\ 85.19\\ 85.19\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} -\\ 2.55\\ 2.93\\ -\\ 2.55\\ 2.93\\ 2.55\\ 2.55\\ 2.93\\ 2.93\\ 2.93\end{array}$	$ \begin{array}{c} 1\\ 6\\ 8\\ 2\\ 12\\ 18\\ 46\\ 59\\ 73\\ 676 \end{array} $	d1bnba_A_10.GLY d1fd3a_A_13_ALA_(8)	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	- 87.50 100.00 - 87.50 100.00 87.50 87.50 100.00 100.00	$\begin{array}{c} -\\ 89.66\\ 100.00\\ -\\ 89.66\\ 100.00\\ 89.66\\ 89.66\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} -\\ 2.96\\ 3.15\\ -\\ 2.96\\ 3.15\\ 2.96\\ 2.96\\ 3.15\\ 3.15\\ 3.15\end{array}$	$ \begin{array}{c} 1\\ 6\\ 1\\ 10\\ 18\\ 70\\ 89\\ 102\\ 18\\ \end{array} $
descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]	descriptor pair (size)	algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	processing time [ms]
d2d9ta1_A_43_VAL d2pu9b1_B_55_VAL (9)	$\begin{array}{c} 1 \ (1.75) \\ 1 \ (2.0) \\ 1 \ (2.33) \\ 2 \ (1.75) \\ 2 \ (2.0) \\ 2 \ (2.33) \\ 3 \ (1.75) \\ 3 \ (2.0) \\ 3 \ (2.33) \\ 4 \end{array}$	$\begin{array}{c} 88.89 \\ 100.00 \\ 100.00 \\ 88.89 \\ 100.00 \\ 100.00 \\ 88.89 \\ 100.00 \\ 100.00 \\ 100.00 \\ 100.00 \end{array}$	$\begin{array}{c} 93.94 \\ 100.00 \\ 100.00 \\ 93.94 \\ 100.00 \\ 100.00 \\ 93.94 \\ 100.00 \\ 100.00 \\ 100.00 \\ 100.00 \end{array}$	$2.65 \\ 3.49 \\ 3.49 \\ 2.65 \\ 3.49 \\ 2.65 \\ 3.49 \\ 2.65 \\ 3.49 \\ $	$ \begin{array}{c} 6\\ 7\\ 6\\ 11\\ 20\\ 20\\ 103\\ 114\\ 114\\ 3198\\ \end{array} $	d2c60a1_A_49_PHE d1k8rb_B_75_PHE (10)	$\begin{array}{c}1\ (1.75)\\1\ (2.0)\\1\ (2.33)\\2\ (1.75)\\2\ (2.0)\\2\ (2.33)\\3\ (1.75)\\3\ (2.0)\\3\ (2.33)\\4\end{array}$	$\begin{array}{c} 90.00\\ 100.00\\ 100.00\\ 90.00\\ 100.00\\ 90.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ 100.00\\ \end{array}$	$\begin{array}{c} 94.87 \\ 100.00 \\ 100.00 \\ 94.87 \\ 100.00 \\ 100.00 \\ 94.87 \\ 100.00 \\ 100.00 \\ 100.00 \\ 100.00 \end{array}$	2.57 2.73 2.73 2.57 2.73 2.73 2.73 2.73 2.73 2.73 2.73	$7 \\ 6 \\ 8 \\ 14 \\ 24 \\ 23 \\ 133 \\ 139 \\ 141 \\ 48766$
descriptor pair (size) (11) L3TREL V-T8TREL V-T8TREL	algorithm (threshold) 1 (1.75) (2.0) (1.23) (2.0) (1.75) (2.0) (2.0) (2.33) (aligned elements [%] 81.82 100.00 81.82 100.00 81.82 100.00 100.00 90 91	aligned residues [%] 84.44 100.00 100.00 84.44 100.00 100.00 95.56	global RMSD [Å] 2.09 2.55 2.55 2.09 2.55 2.55 2.55 2.55 2.59	processing time [ms] 7 7 7 7 14 39 40 142						

2.55

2.55

2.55

155

150

352344

100.00

100.00

100.00

d2cqca1. d1u2fa___

3(2.0)

3(2.33)

4

100.00

100.00

100.00

Table St6: Details of structural motifs constructed in the proximity of residue A123-VAL (d1e0ta1) according to the building concept of descriptors taking into consideration values 3, 5, 7 of element size and two types of expressions for identification of in-contact residues: "OR(DISTANCE:CBX \leq 6.5, AND(DISTANCE:CBX \leq DISTANCE:CA – 0.75, DISTANCE:CBX \leq 8.0))" [EXP1] and "OR(DISTANCE:SCGC \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:CA – 0.75, DISTANCE:SCGC \leq 8.0))" [EXP2]. See Figure Sf4 for visualization of 3D structures of these motifs

expression	element	segments	elements	residues	position	sequence
	size	count	count	count		
EXP1	3	6	8	22	A92–A94 A116–A118 A122–A124 A131–A135 A141–A145 A159–A161	TFT DLS TVL GMEVT KVICK NLP
	5	6	8	34	A91-A95 A115-A119 A121-A125 A130-A136 A140-A146 A158-A162	FTFTT TDLSV NTVLV IGMEVTA NKVICKV VNLPG
	7	5	8	45	A90–A96 A114–A126 A129–A137 A139–A147 A157–A163	TFTFTTD TTDLSVGNTVLVD LIGMEVTAI GNKVICKVL GVNLPGV
EXP2	3	8	11	30	A92–A94 A107–A109 A112–A114 A116–A118 A122–A124 A131–A135 A141–A145 A157–A161	TFT AVT GFT DLS TVL GMEVT KVICK GVNLP
	5	6	11	45	A91-A95 A106-A119 A121-A125 A130-A136 A140-A146 A156-A162	FTFTT VAVTYEGFTTDLSV NTVLV IGMEVTA NKVICKV KGVNLPG
	7	5	11	56	A90-A96 A105-A126 A129-A137 A139-A147 A155-A163	TFTFTTD MVAVTYEGFTTDLSVGNTVLVD LIGMEVTAI GNKVICKVL NKGVNLPGV

Table St7: Details of structural motifs constructed in the proximity of residue A30-PHE (d2f5ya1) according to the building concept of descriptors taking into consideration values 3, 5, 7 of element size and two types of expressions for identification of in-contact residues: "OR(DISTANCE:CBX \leq 6.5, AND(DISTANCE:CBX \leq DISTANCE:CA – 0.75, DISTANCE:CBX \leq 8.0))" [EXP1] and "OR(DISTANCE:SCGC \leq 6.5, AND(DISTANCE:SCGC \leq DISTANCE:CA – 0.75, DISTANCE:CA – 0.75, DISTANCE:SCGC \leq 8.0))" [EXP2]. See Figure Sf5 for visualization of 3D structures of these motifs

expression	element	segments	elements	residues	position	sequence
	size	count	count	count		
	3		10	28	A20-A22	TIP
					A27–A31	GFGFT
		7			A39–A44	RVQAVD
					A46-A50	GGPAE
					A53–A55	GLQ
					A57 - A59	LDT
EXP1					A88–A90	ILL
					A19-A23	ITIPR
	5	4	10	40	A26–A32	DGFGFTI
	0	4	10		A38–A60	VRVQAVDSGGPAERAGLQQLDTV
					A87–A91	IILLV
		3	7	41	A25–A33	KDGFGFTIC
	7				A37–A61	PVRVQAVDSGGPAERAGLQQLDTVL
					A86–A92	EIILLVW
	3	8	11	29	A20-A22	TIP
					A28–A33	FGFTIC
					A39–A41	RVQ
					A48–A50	PAE
					A53–A55	GLQ
					A59–A61	TVL
					A79–A81	EIR
					A86–A90	EIILL
DUDO		7	11	45	A19–A23	ITIPR
EXP2	5				A27–A34	GFGFTICC
					A38 - A42	VRVQA
					A47–A56	GPAERAGLQQ
					A58–A62	DTVLQ
					A78–A82	HEIRS
					A85–A91	SEIILLV
	7	4	10	51	A26-A35	DGFGFTICCD
					A37–A43	PVRVQAV
					A46–A63	GGPAERAGLQQLDTVLQL
					A77–A92	AHEIRSCPSEIILLVW

Table St8: Details of descriptors constructed in the proximity of residues A123-VAL (d1e0ta1), A30-PHE (d2f5ya1), and A2309-VAL (d2w0pa1) by various expressions for identification of in-contact residues published in the literature. See Figure Sf6 for the definitions of the expressions and for visualization of 3D structures of these descriptors

descriptor	expression	segments	elements count	residues count	position	sequence
dle0ta1_A_123_VAL	EXP1	5	7	29	A91–A95 A121–A125 A130–A136 A140–A146 A158–A162	FTFTT NTVLV IGMEVTA NKVICKV VNLPG
	EXP2	6	8	34	A91-A95 A115-A119 A121-A125 A130-A136 A140-A146 A158-A162	FTFTT TDLSV NTVLV IGMEVTA NKVICKV VNLPG
	EXP3	5	13	48	A91-A95 A106-A126 A129-A136 A140-A146 A156-A162	FTFTT VAVTYEGFTTDLSVGNTVLVD LIGMEVTA NKVICKV KGVNLPG
d2f5ya1_A_30_PHE	EXP1	3	6	25	A26–A32 A38–A45 A47–A56	DGFGFTI VRVQAVDS GPAERAGLQQ
	EXP2	4	10	40	A19–A23 A26–A32 A38–A60 A87–A91	ITIPR DGFGFTI VRVQAVDSGGPAERAGLQQLDTV IILLV
	EXP3	6	12	50	A19-A23 A26-A34 A38-A56 A58-A62 A78-A82 A85-A91	ITIPR DGFGFTICC VRVQAVDSGGPAERAGLQQ DTVLQ HEIRS SEIILLV
d2w0pa1_A_2309_VAL	EXP1	5	7	30	A2239-A2245 A2259-A2263 A2271-A2275 A2307-A2311 A2314-A2321	HKVRAGG FSIWT LAIAV VSVKF EHIPDSPF
	EXP2	6	10	44	A2239-A2250 A2257-A2263 A2271-A2275 A2293-A2297 A2307-A2311 A2314-A2323	HKVRAGGPGLER AEFSIWT LAIAV CGVAY VSVKF EHIPDSPFVV
	EXP3	5	14	49	A2239-A2250 A2257-A2263 A2269-A2275 A2293-A2297 A2306-A2323	HKVRAGGPGLER AEFSIWT GGLAIAV CGVAY EVSVKFNEEHIPDSPFVV

Table St9: Details of descriptors d2cqca1_A_134_LEU, d1u2fa_A_18_MET, and their structural alignments obtained as results of Algorithms 1–4. This pair of descriptors is the greatest one among the pairs presented in Table St5. See Figure Sf7 for visualization of these structural alignments

descriptor	segments count	elements count	residues count	position	sequence
d2cqca1_A_134_LEU	4	11	45	A120–A140 A145–A151 A160–A166 A182–A191	LGVFGLSLYTTERDLREVFSK ADVSIVY GFAFVYF MELDGRRIRV
d1u2faA_18_MET	4	11	45	A4–A24 A40–A46 A49–A55 A70–A79	LYVGNIPFGITEEAMMDFFNA LAVQINQ NFAFLEF IIFQGQSLKI

algorithm (threshold)	aligned elements [%]	aligned residues [%]	global RMSD [Å]	alignment
1 (1.75)	81.82	84.44	2.09	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
1 (2.0)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
1 (2.33)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
2 (1.75)	81.82	84.44	2.09	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
2 (2.0)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
2 (2.33)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
3 (1.75)	90.91	95.56	2.59	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
3 (2.0)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
3 (2.33)	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI
4	100.00	100.00	2.55	LGVFGLSLYTTERDLREVFSKADVSIVYGFAFVYFMELDGRRIRV LYVGNIPFGITEEAMMDFFNALAVQINQNFAFLEFIIFQGQSLKI