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Supplementary Fig. 1: Genome Heatmap summary view

Genome heatmaps are summarized using boxplots (i.e., box-and-whisker plot) showing the data 
distribution on each probe. The black dots are the medians of data distribution, and the red and blue 
lines are the “whiskers” as described in a standard boxplot32. The red/blue color is scaled according to 
midpoint values of the whisker lines, therefore having the effect of using brighter colors to emphasize 
the genomic locations with more extreme array measurements. Panels (a)-(d) are screenshots of four 
whole-genome oriented summary views of copy number variation in two different tumor types. Panels 
(a) and (b) are copy number variation data of adenocarcinoma of the breast from a cohort of California 
patients assessed using BAC array CGH 5 (a), and a cohort of European patients using a customized 
Agilent oligo array 6 (b). Data in panels (c) and (d) are glioblastoma patient cohorts made available 
through the TCGA consortium and assayed on different experimental platforms, Agilent 244A CGH array 
(c) and Illumina 550K SNP array (d). These panels reveal strong similarities in global copy number 
variation signatures within a cancer type and differences between cancer types.  Panel (e) illustrates a 
zoomed-in summary view of the data from panel (d) on chromosome 8 to 12. The summary view is 
available under the chromosomal display mode. An alternative view of the same array data, heatmap 
view, is illustrated in Fig. 1. Fig. 1 panels (c) and (d) display the subset of TCGA GBM samples whose 
clinical parameters are available, whereas panels (c) and (d) in Supplementary Fig. 1 are calculated 
using all GBM samples, many of which lack clinical parameters (illustrated in gray in the clinical 
heatmaps). Panel (f) illustrates a further zoomed-in view that takes you to the UCSC Genome Browser8. 
Here the CNA data appear as a composite data track, with each subtrack corresponding to one patient 
or sample (only 5 samples are shown due to space limitations). Panel (g) illustrates the clinical 
heatmap, and (h) shows clinical values associated with one sample.
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Supplementary Fig. 2: UCSC Cancer Genomics Browser track control

Datasets from various studies are grouped according to cancer type.  Each dataset can be displayed as a genome 
heatmap, or as a summary.
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Supplementary Fig. 3: The clinical feature configuration panel

To control the clinical heatmap, the user must click on the blue bar to the right of the clinical heatmap to 
bring up the “Feature Settings” panel shown above.  From here, the user may select and rearrange the 
features drawn in the clinical heatmap, define subgroups according to those features, as well as perform 
various statistics on the defined subgroups.
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Supplementary Fig. 4: Controlling genesets in “Geneset” view

 (a) The Existing Genesets tab allows the user to search for a particular geneset by the 
geneset’s name or by a gene belonging to the geneset. When the desired geneset is 
found, the user may click on it to view a listing of the genes in that set as well as add it 
to the list of genesets to be displayed. The search will also look at any genesets the 
user may have previously saved in our database.  (b) The User Genesets – Gene 
Search tab allows users to define their own genesets by searching for genes one at a 
time. The user enters a partial or full gene name in the search area, which returns a list 
of matching HUGO gene symbols. The user selects the desired gene to add it to the 
geneset being defined. (c) The User Genesets – Gene List tab allows also users to 
define their own genesets by inputting a comma-separated list of genes. This list of 
genes is validated against the HUGO symbols in our database and can then be stored 
in our database. When the geneset is fully defined after (b) or (c), the user can store the 
geneset in our database and add it to the list of genesets being displayed.



Hess et al.
Affy U133

ERpath CR

van ’t Veer-70 TFAC-30

ERMetastases

van de Vijver et al.
Agilent, Hu25K 

+

-

-
+

+

+

-

-

Metastases

Metastases
free

Complete
response

Partial
response/
resistant

a b

c d

Supplementary Fig. 5: Comparison of outcome predictors with Pathway Sorter and Feature Sorter

The 2x2 panel is a breast cancer gene expression profile from two clinical studies27-29 compared using two outcome 
predictors 26,27,29. Each row is a clinical study, and each column is an outcome predictor. Clinical outcome and tumor estrogen 
receptor status (ER) from the corresponding studies are color-coded in yellow (positive) and black (negative) and displayed 
alongside expression data. This cross-study and cross-gene set comparison is generated using the UCSC Cancer Genomics 
Browser Pathway Sorter and Feature Sorter. The Feature Sorter sorts tumor samples first by outcome, then by ER. The 
Pathway Sorter organizes gene expression data into two gene sets, in this case the two outcome predictors (van ‘t Veer-70 
and TFAC-30). The Feature Sorter divides tumor samples into two subgroups based on clinical outcomes, demarcated by the 
red and green vertical bars on the right of each panel. Values measuring differential gene expression between the red and 
green subgroups are displayed as statistical tracks below the panel. The height of the statistics track bars is Bonferroni 
corrected Wilcoxon p-values (-log10(p)). The track is colored in red or green when p < 0.05, otherwise in gray. Green or 
downward track bars indicate relative higher expression in the green subgroup of tumors. Red or upward track bars indicate 
relative higher expression in the red subgroup of tumors.
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Supplementary Fig. 6: Outcome predictors are highly correlated with estrogen receptor (ER) status

The 3-by-2 panel compares two outcome predictors (van ‘t Veer-70, TFAC-30)26,27 with ER status using breast cancer gene 
expression profile from three clinical studies26,27,29. Each row is a clinical study, and each column is an outcome predictor. 
Tumor ER status and clinical outcome from the corresponding studies are color-coded in yellow (positive) and black 
(negative). Tumor samples are divided into two subgroups demarcated by the red (ER+) and green (ER-) vertical bars on the 
right of the panel. Expression profiles of genes in the two outcome predictors appear highly correlated with ER status. To 
quantify the visual pattern, Wilcoxon rank-sum test is used to measure the significance of differential gene expression 
between the ER+ and ER- subgroups. The p-values are displayed as statistical tracks below the panel. The height of the 
statistics track is Bonferroni corrected p-values (-log10(p)). The track is colored in red or green when corrected p < 0.05, 
otherwise in gray. Green or downward track bars indicate relatively higher expression in the green subgroup of tumors versus 
the red subgroup. Red or upward track bars show relatively higher expression in the red subgroup versus the green 
subgroup.
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Supplementary Fig. 7: Three-way comparison of expression-based outcome predictors

This figure is similar to Supplementary Fig. 5 (refer to its legend), except that another study, Wang et al.29, is chosen to construct a three-way 
comparison. Wang et al. identified a 76-gene signature consisting of 60 genes for patients with estrogen-receptor (ER) positive tumors and 16 genes 
for ER-negative tumors to predict distant metastasis of lymph-node-negative primary breast cancer, treated or untreated (here we use the 60-gene set, 
Wang-ER+). van’t Veer-70 predictor overlaps with Wang-ER+ by 4 genes. There is no gene in common across all three predictor sets. The Wang 
samples are classified based on their relapse status. For clearer illustration, data from ER negative samples is masked in the column, because they are 
irrelevant to the Wang-ER+ classifier.
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Supplementary Fig. 8: Integrative visualization of TCGA Glioblastoma Multiforme (GBM) genomic data

(a,b) Histogram of non-silent mutations (e.g. missense, insertion, deletions, etc.) in GBM somatic and germ line 
tissues, respectively. (c) Copy number alterations in GBM tumor and normal samples. Red marks represent amplified 
genes in the sample tissue, while blue marks represent deleted genes. Note that the clinical data to the right of (c) is 
sorted by tissue type: tumor (black) vs. normal (yellow). The vast majority of copy number alterations seen in the 
heatmap occur in the tumor samples, as expected. (d) A Bonferroni-corrected t-test comparing the distribution of copy 
number alterations in tumor versus normal samples. A green bar represents a significantly deleted gene (p < 0.05, after 
Bonferroni correction) and a red bar represents a significantly amplified gene in the tumor samples.



Table 2: Publicly available cancer genomics studies in the UCSC Cancer Genomics Browser 
 

Study Reference Tissue Type Type of Data Platform 
Number 
of 
Samples 

Number 
of 
Features 

Pharmacogenomic 
predictor of sensitivity to 
preoperative chemotherapy 
with paclitaxel and 
fluorouracil, doxorubicin, 
and cyclophosphamide in 
breast cancer. 

(1) Breast Microarray 
Expression 

Affymetrix HG-
U133A  133 26 

A collection of breast 
cancer cell lines for the 
study of functionally distinct 
cancer subtypes. 

(2) PMID: 
17157791 Breast 

Microarray 
Expression and 
Copy Number 
Variation 

Affymetrix HG-
U133A / 
OncoBAC 

51 / 53 9 

Gene-expression profiles to 
predict distant metastasis 
of lymph-node-negative 
primary breast cancer. 

(3) PMID: 
15721472 Breast Microarray 

Expression 
Affymetrix HG-
U133A  286 4 

Genomic and 
transcriptional aberrations 
linked to breast cancer 
pathophysiologies. 

(4) PMID: 
17157792 Breast 

Microarray 
Expression and 
Copy Number 
Variation 

Affymetrix 
Genechip HTA  
/ OncoBAC 

118 / 145 34 

Gene expression profiling 
predicts clinical outcome of 
breast cancer. 

(5) PMID: 
11823860 Breast Microarray 

Expression ? 117 10 

High-resolution aCGH and 
expression profiling 
identifies a novel genomic 
subtype of ER negative 
breast cancer. 

(6) PMID: 
17925008 Breast Copy Number 

Variation 
Custom 30K 
chip 220 20 

Microarray analysis reveals (7) PMID: Breast Copy Number ? 46 0 



a major direct role of DNA 
copy number alteration in 
the transcriptional program 
of human breast tumors 

12297621 Variation 

A gene-expression 
signature to predict survival 
in breast cancer across 
independent data sets 

(8) PMID: 
16936776 Breast Microarray 

Expression 
Agilent Human 
1A 135 20 

Strong time dependence of 
the 76-gene prognostic 
signature for node-negative 
breast cancer patients in 
the TRANSBIG multicenter 
independent validation 
series 

(9) PMID: 
17545524 Breast Microarray 

Expression 
Affymetrix HG-
U133A 198 24 

 A gene-expression 
signature as a predictor of 
survival in breast cancer.  

(10) PMID: 
12490681 Breast Microarray 

Expression ? 295 14 

Modeling genomic diversity 
and tumor dependency in 
malignant melanoma. 

(11) PMID: 
18245465 Melanoma 

Microarray 
Expression and 
Copy Number 
Variation(x2) 

Affymetrix HG-
U133A / 
Affymetrix 250K 
StyI / Affymetrix 
50K XbaI 

95 / 70 / 31 5 

Chromosomally unstable 
mouse tumours have 
genomic alterations similar 
to diverse human cancers. 

(12) PMID: 
17515920 

Mixed (T-ALL, 
Pancreas, 
Colorectal, 
GBM & 
Melanoma) 

Microarray 
Expression and 
Copy Number 
Variation(x2) 

Agilent Human 
1A / Agilent 
44B / Agilent 
244A 

204 / 86 / 8 1 

Characterizing the cancer 
genome in lung 
adenocarcinoma. 

(13) PMID: 
17982442 Lung Copy Number 

Variation 
Affymetrix 500K 
StyI 383 16 

Comprehensive genomic 
characterization defines 

(14) PMID: 
18772890 

Glioblastoma 
Multiforme 

Gene 
Expression (x2), 

Affymetrix HG-
U133A / Agilent 

188 / 244 / 
432 / 341 / 3 



human glioblastoma genes 
and core pathways. 

Copy Number 
Variation (x2), 
Methylation, 
miRNA 

G4502A / 
Agilent 244A / 
Agilent 244A / 
Illumina 
OMA003 / 
Agilent G4470B 

237 / 228 

Transcriptional 
recapitulation and 
subversion of embryonic 
colon development by 
mouse colon tumor models 
and human colon cancer. 

(15) PMID: 
17615082 Colon Expression Affymetrix HG-

U133Plus 2 105 17 
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Supplementary Notes 
 
Availability 
 
To access the public site, please visit http://genome-cancer.ucsc.edu/. For general questions 
regarding the Browser, please contact user support via email at genome-cancer@soe.ucsc.edu. You 
may contact the authors to obtain a copy of the software to install locally. 
 
Current popular tools for cancer genomics analysis 
 
Several existing tools support large genomic data analysis. One that perhaps most closely fulfills 
some of the goals of cancer genomics is the Genboree Discovery System (www.genboree.org). This 
internet-based system can be configured to support genome-centric discovery processes such as 
array-CGH studies and genome re-sequencing. Another powerful tool is GenePattern1. Originally 
developed to allow biomedical researchers to perform custom gene expression analysis, GenePattern 
has expanded its capabilities to support other genomics studies including proteomics and SNP 
analysis by fostering close to 90 computational and visualization modules. Additional resources under 
development include the Integrative Genomics Viewer developed at Broad Institute 
(http://www.broad.mit.edu/igv/) and the Cancer Molecular Analysis Portal developed at NCI 
(https://cma.nci.nih.gov/cma/).  
 
Components of UCSC Cancer Genomics Browser 
 
(1) Genome Heatmap: visualizing genomic data with a genome heatmap 
 
The main panel of the Cancer Genomics Browser, Genome Heatmap, contains a whole-genome-
oriented view of genome-wide experimental measurements for individual and sets of samples/patients. 
Heatmaps, graphical representations of data where the values taken by a variable in a two-
dimensional map are represented as colors, have long been used to display high-throughput, 
genome-wide experimental data such as those generated by microarrays2. The main advantage of a 
heatmap is that, in addition to the two dimensions of the plane into which information can be coded, 
color is used to add a third dimension of information. The basic heatmap concept is implemented in 
Genome Heatmap to simultaneously display thousands of whole-genome data points of many 
patients or samples, such as transcriptome data measured by a genome tiling array and copy number 
alteration (CNA) data measured by a CGHarray (Fig. 1b-e in main text). In each Genome Heatmap 
panel, the x-axis represents genomic coordinates, i.e. a concatenation of all human chromosomes. 
The y-axis is an ordered stack of genome-wide measurements, each row representing data of one 
tumor or one sample. Various color gradients are used to encode the actual experimental 
measurements. For example, a red-black-green gradient is used to display expression data, with red 
and green defining up- and down-regulated genes respectively, and an alternative red-white-blue 
color gradient is used for CNA data, where red indicates amplification and blue indicates deletion (Fig. 
1 in main text). 
 Supplementary Fig. 1 displays a summary view for the CNA data from two different tumor 
types, glioblastoma of the brain and carcinoma of the breast, which are visualized as genome 
heatmaps in Fig. 1. Both views reveal immediately that these two tumor types exhibit coherent but 
highly distinct global patterns of genomic copy number variation (Fig. 1a-d, and Supplementary Fig. 
1a-d)3-7. A configuration panel provides a gateway for investigators to select datasets and display 
options (Supplementary Fig.2), enabling interactive discovery of these patterns. To explore detailed 
data patterns in a particular genomic region, the Genome Heatmap allows users to zoom and pan 
(Supplementary Fig. 1e), ultimately bringing them to the general UCSC Genome Browser8,9, where it 



  

is easy to examine data from individual samples in small regions (Supplementary Fig. 1f). For 
example, PTEN is a tumor suppressor that is commonly mutated in a variety of cancers10-12. Zooming 
in to the region containing the PTEN gene from a heatmap containing tumor-derived glioblastoma 
CNA data (Supplementary Fig. 1e) shows a clear tendency in tumors toward genomic deletion in this 
region, and allows one to identify particular samples exhibiting this deletion (Supplementary Fig. 1f). 
Other features of this gene and its genomic region are easily accessible through the browser at this 
point, including comparative genomics annotations and tracks of genome-wide chromatin 
immunoprecipitation (ChIP) data in different cell lines for various histone modifications and 
transcription factor binding sites, such as the binding sites for c-MYC and p53. These are a sampling 
of the myriad such tracks with basic biological information of relevance to cancer that will become 
available through the ENCODE project13 and related epigenomic initiatives. 
 
(2) Feature Sorter: visually integrating clinical data with a feature sorter 
 
Clinical risk factors are commonly used to assess the likelihood of cancer progression. The Feature 
Sorter panel on the right-hand side of the Cancer Genomics Browser allows researchers to visually 
examine the relationship between clinical and genomic measurements by placing a heatmap 
representing clinical data for each sample in a secondary panel beside the heatmaps representing 
genomic data from these same samples. The secondary heatmap illustrates any or all clinical features 
available to the user, based on their authorized level of data access (Fig. 1g and Supplementary Fig. 
1g). Selection and rearrangement of the vertical (patient) order of the samples in the clinical and 
genomic heatmaps can be accomplished by simultaneously sorting based on a clinical feature or 
combination of features. All clinical features are encoded numerically (e.g. tumor stage or tumor 
response: see Supplementary Method) according to specific data agreement and made available to 
the Feature Sorter to facilitate this sorting. After numeric encoding, feature values are displayed using 
a color range of green (negative), black (zero) and yellow (positive) in the clinical heatmap. For 
example, the breast cancer data in Fig. 1 are sorted by estrogen receptor status5,6, with ER- coded as 
0 (black) and ER+ as 1 (yellow); the brain cancer samples, which contain normal controls, are sorted 
on normal (0, black) vs. tumor (1, yellow). The features displayed at any given time by the Feature 
Sorter are defined by a Feature Settings control panel (Supplementary Fig.3). We used the I-SPY 
TRIAL dataset as a use case to develop this tool, taking advantage of its rich diversity of clinical, 
pathological, biochemical and molecular data and the fact that all data were aggregated in a single 
source via caIntegrator (https://cabig.nci.nih.gov/tools/caIntegrator). 
 With selection and vertical sorting, the Feature Sorter provides a means to visually explore the 
correlation of clinical and genomic data across patients, using the pattern-recognition power of the 
human eye to enable the exploration of vast amounts of data without the need to perform complex 
computational analyses. For example, we see immediately that there is a striking difference between 
the genomic content of these two sample types when the data in Fig. 1d are sorted on normal vs. 
tumor, with the normal samples exhibiting almost no large-scale copy number variation and the 
tumors rife with CNAs. When a combination of features is sorted, the first feature acts as the primary 
sort field; any ties between patients with identical values for the first feature are broken by the 
subsequent sorting features. The sorting type (ascending or descending) is adjusted by clicking on the 
feature’s column in the heatmap, while the sorting order can be adjusted on the configuration panel 
(Supplementary Fig. 3). Data from the entire dataset or any subset defined by a combination of 
features can be alternatively viewed in a summary or aggregate mode (Supplementary Fig. 1). Apart 
from caveats noted in Homer et al.14 such data aggregation affords similar interpretation of the data 
and often makes trends more transparent, while maintaining the anonymity of individual patients.   

Finally, a “patient view” page, such as the one shown in Supplementary Fig. 1h, shows all 
the clinical parameters and metadata associated with this patient in text format. When part of the 
clinical data requires access control, only authorized investigators are able to obtain the actual values 
of these clinical parameters. For these investigators, the cancer genomic and clinical data are 



  

available with all the other genomic datasets that cohabitate the Genome Browser, from which a large 
amount of biological and biomedical information can be obtained, correlated, or intersected using the 
existing Genome Browser tools8. 
 
(3) Pathway Sorter: zooming into pathways with a pathway sorter 
 
While the Genome Heatmap provides a means to visualize cancer genomics data at the whole-
genome or chromosomal level and the UCSC Genome Browser displays an integration of such data 
at individual genomic loci, it is becoming increasingly clear that genetic pathways rather than 
individual genes govern the course of tumorigenesis15-18. Mutations or expression changes in any of 
several genes in the same pathway can cause equivalent disturbance of the cellular dynamics. 
Pathways therefore provide a more robust and biologically meaningful way to summarize genomic 
data by grouping genes that may act in a concerted manner. Furthermore, pathways can include 
genes that do not themselves exhibit significant expression change. These genes may be 
downstream targets of an unperturbed, alternative path or, as found in a study on cancer 
subnetworks19, these particular genes may function as bridges connecting different subnetworks 
within the overarching pathway. 
 The Pathway Sorter provides the ability to visualize cancer genomic data within the context of 
pathways by organizing the placement of data into sets of genes according to individual pathways as 
opposed to chromosomal gene location. Such an organization enables the visualization of genomic 
data of a genetic regulatory pathway, a signaling pathway, a set of genes in a given Gene Ontology 
(GO) category, or any user-defined set of genes. Used in conjunction with the Feature Sorter, the 
Pathway Sorter can help researchers discover perturbations of certain pathways that segregate a 
subset of patients with a particular clinical status. 
 The Pathway Sorter features a number of predefined genesets that group genes based on GO 
terms, those participating in genetic pathways stored in the KEGG20 and Reactome13,21 databases, 
those sharing expert-curated “gold standard” functional annotations22, as well as other reliable means 
of categorizing related genes (Supplementary Table 1, and Supplementary Fig. 4 for configuration 
panel). Researchers can also define their own desired genesets. 
 
(4) Statistical analysis features 
 
The Genome Heatmap, Feature Sorter and Pathway Sorter provide an interface to visually explore 
cancer genomics datasets. However, statistical analysis of these data is needed to provide a 
quantitative assessment of observed patterns and to furthermore reveal significant associations that 
do not lend themselves to visual identification. The UCSC Cancer Genomics Browser provides basic 
statistical support and additional functionality is under development. For example, a user can define 
subgroups within a dataset, compare their differences statistically using a Student’s t-test or Wilcoxon 
test, or generate an aggregate for each subgroup and compare the difference in a similar fashion (see 
Supplementary Text for a detailed procedure). In addition, the browser allows the visualization of 
results generated from standard and advanced statistical analysis tools (e.g. the statistic track in 
Supplementary Fig. 5), such as publicly available software, statistical methods implemented by our 
group, or tools developed by the user to analyze cancer genomic datasets. 
 
Example: using the browser utilities to compare gene expression classifiers 
 
 In recent years, genome-wide measurements of gene expression have been used to identify 
patterns of gene activity that can be used as diagnostic and prognostic markers23. These markers are 
selected to discriminate between different classes of disease with an aim to provide a better means 
for individual risk assessment and outcome prediction in patients. Biological properties of the 
components of these markers can also shed light on pathogenic processes and suggest potential 



  

intervention strategies. A number of groups have developed multi-gene prognostic markers for several 
cancers.  While there is often little overlap between the genes that have outcome-predicting potential 
between studies, several studies24,25 have shown that concordant predictions are made by these 
various biomarkers. The ability to compare biomarkers across clinical scenarios and across platforms 
using a tool such as the UCSC Cancer Genomics Browser is likely to provide further insights into the 
similarities and differences between various biomarkers. 
 Consider two recent outcome predictors based on gene expression for breast cancer patients. 
van’t Veer et al.26 found a 70-gene expression signature that is predictive of distant metastasis (poor 
prognosis) in the absence of treatment for lymph-node-negative patients (van’t Veer-70); Hess et al.27 
developed a 30-probe predictor of pathologic complete response (path CR) to preoperative weekly 
paclitaxel and fluorouracil-doxorubicin-cyclophosphamide (T/FAC) chemotherapy (TFAC-30). The 
prognostic power of the van’t Veer-70 marker was validated in a large consecutive-patient cohort in a 
subsequent study by van de Vijver et al.28. These two studies aimed at different clinical outcomes 
(metastasis without treatment versus response to chemotherapy), used different expression platforms 
(Agilent Hu25K versus Affymetrix U133), and shared little commonalities. The two predictor sets 
overlap by one gene. 
 To use the Cancer Genomics Browser to explore these datasets, we group genes 
corresponding to van’t Veer-70 and TFAC-30 into custom-defined genesets and visualize expression 
data from both studies within these genesets (Supplementary Fig. 5). All samples are secondarily 
sorted by their ER status. Expression data are displayed in rows, while the two columns represent two 
predictor genesets, as shown in Supplementary Fig. 5 in a roughly two-by-two, four panel layout. 
Since we know the clinical outcome, we classify the van de Vijver samples (lymph-node negative 
patients only) based on their metastatic status, and the Hess samples based on their path CR status. 
The expression patterns of genes within each predictor geneset can be directly compared between 
patients of different clinical outcome. Samples were assigned to groups as indicated by the red or 
green bars. A Wilcoxon test is performed for each gene between differentially classified samples, and 
a p-value (corrected for multiple hypotheses) is plotted in a statistic track below each expression 
panel. For example, in panel (a), samples are classified into two groups. The upper group labeled by 
the green bar contains patients that did not have distant metastasis, while the lower group labeled by 
the red bar contains patients that had metastasis. Expression values of genes that correspond to van’t 
Veer-70 are displayed, and the statistic track below the expression panel suggests that more than half 
of the genes are significantly differentially expressed between these two patient groups. 
 Several interesting observations can be made based on this simple display. For example, van 
de Vijver patients show significant expression differences in several genes that predict response to 
chemotherapy (panel b); Hess patients show consistent differential expression patterns in genes that 
predict distant metastasis (panel c). This may not be surprising since the clinical outcomes measured 
in each study are different but highly correlated, and genes in each marker set may be related as well 
– each marker set samples only parts of common pathways that are central to breast cancer. In 
particular, the expression pattern of Hess patients who achieved complete pathologic response to 
chemotherapy correlates positively with van de Vijver patients who developed distant metastases, as 
highlighted in Supplementary Fig. 5 by the two connected purple boxes, indicating an intrinsic 
connection between these two clinical outcomes. Such a correlation between two different patient 
cohorts and two different clinical measurements suggests a greater biological robustness to the 
conclusion than mere replication of the same result on independent patient cohorts. This correlation 
suggests that cases with poor prognosis may have better response to chemotherapy, a conclusion 
also supported by similar findings from the I-SPY consortium (unpublished data). If corroborated, such 
insights may eventually be used to tailor individual patient care.  
 Statistical analysis of individual predictors can also reveal the extent to which they depend on 
certain key clinical parameters. For example, if we sort patients based on their ER status 
(Supplementary Fig. 6), it becomes obvious that TFAC-30 and van’t Veer-70 are highly correlated 
with ER gene expression. One may wonder whether these predictors are actually more valuable than 



  

ER status alone. Using the mutual information statistic, we can easily quantify the amount of 
additional information about outcome these predictors contribute beyond that given by ER status 
alone. For TFAC-30, ER status alone provides 0.160 bits of information per patient toward predicting 
path CR (pathological complete response), but given this information from ER status, the TFAC-30 
predictor provides significantly more information toward predicting path CR (an additional 0.106 bits 
per patient), indicating that it is definitely a more valuable biomarker than ER status alone. Similar 
trends can be obtained for van’t Veer-70, as illustrated in the following table (Supplementary 
Methods): 
 

Table: Mutual information (I) of ER, outcome, and classifier 
(a) 

 Mutual Information van de Vijver et al.28 
A I (classifier; ER) 0.110 
B I (metastases; classifier) 0.081 
C I (metastases; ER) 0.011 
   
D I (metastases; classifier | ER) 0.077 
E I (metastases; ER | classifier) 0.007 

 
(b) 

 Mutual Information Hess et al.27 
A I (classifier; ER) 0.370 
B I (path CR; classifier) 0.256 
C I (path CR; ER) 0.160 
   
D I (path CR; classifier | ER) 0.106 
E I (path CR; ER | classifier) 0.009 

 
 
 In a slightly larger, three-way comparison we included data from Wang et al.29 that shared a 
similar clinical outcome with van de Vijver et al. and used the same platform as Hess et al. 
(Supplementary Fig. 7). While these marker sets differentiate patients in their respective studies, 
they do not seem to work well on other patient cohorts. This is largely due to many differences 
between studies. However, it also highlights the difficulty in identifying key genes and pathways that 
have important, generalizable prognostic and diagnostic value. Perhaps a solution may be to look at it 
from a pathway-driven perspective, so that lack of overlap of specific genes may not matter if one 
uses pathways instead of specific genes 17-19,30.  
 
Example: using the browser utilities to identify disturbed pathways in glioblastoma 
 
In this example we demonstrate the power of using the geneset view to visually assess the state of 
biological pathways across different data types (Supplementary Fig. 8).  GBM mutation and copy 
number alteration data are shown for the three pathways identified by the TCGA Research Network 
and a control pathway containing a collection of sequenced genes on chromosome 18. The three 
pathways are: (1) p53 pathway (CDKN2A, MDM2, MDM4 andTP53); (2) RB pathway (CDKN2A, 
CDKN2B, CDKN2C, CDK4, CDK6, CCND2 and RB1); (3) RTK/Ras/PI3K pathway (EGFR, ERBB2, 
PDGFRA, MET, SPRY2, RAS, NF1, AKT1, PIK3CA, PIK3R1 and PTEN). The control pathway 
contains the following genes: KIAA1632, PTPN2, ROCK1, PHLPP, SMAD2, SMAD4, BCL2 and 
C18orf25.  
 



  

What should be readily apparent is that the three pathways experienced a much greater 
number of non-silent mutations (in both germ line and somatic tissues) and copy number alterations 
compared to the control pathway. By presenting the genomic data in such a way, it is much easier to 
gain an appreciation of the level of disturbance that these pathways undergo during/after 
tumorigenesis. 
 
Data security and user access control 
 
The UCSC Cancer Genomics Browser is currently installed on several web server systems that serve 
different collaboration projects. All these servers (except the public server genome-cancer.ucsc.edu) 
are implemented with the industry standard HTTPS protocol with user login and password control. 
Each project has its own dedicated web server with specific authorized web users (granted by 
responsible persons of individual projects), hence the private confidential control-access data can be 
accessed by their corresponding authorized users only.  

We are also exploring the possibility of adopting a universal authentication system, 
InCommon, for some server(s) to support large user communities, e.g.TCGA. 

As the number of requests for collaboration grows, we find ourselves running out of available 
physical machines for web servers; hence we adopted the Virtual Machine (VM) technology that 
enables us to create multiple VMs (one VM for one web server) on a single computer hardware 
system. This also allows us to update our code base to enable individual VMs to share a large number 
of common public datasets (e.g. the human genome with its massive amount of public annotation 
data) without duplicating them on individual systems.  

On the public site, we support limited user authentication for collaborations and saved custom 
settings. The user is authenticated with a secured token-exchange mechanism that provides the 
greatest level of non-encrypted authentication available. Passwords are encrypted with industry-
standard one-way encryption and are never sent in plain text. User accounts can be requested from 
the authors. When a collaboration is established, pre-publication non-clinical data can be uploaded to 
the browser and visualization of that data can be limited to one or more user accounts. 
 
Supplementary Methods 
 
Mapping genomics data to the human genome assembly 
 
In order to display microarray data in either chromosome or geneset views, the UCSC Cancer 
Genomics Browser requires that each microarray probe be mapped to the latest human genome 
assembly (build 36, March 2006, hg18).  Most recent studies and modern microarray platforms 
already provide this information. However, for those datasets that do not provide probe mappings, we 
use blat31 to align the oligonucleotide probes to the human genome. Valid mappings require at least a 
95% sequence identity across the full length of the probe. If a probe maps to multiple genomic regions 
under these criteria, the highest-scoring alignment is chosen for the probe mapping. 
 
Encoding clinical features 
 
The clinical feature heatmap is a graphical representation of a diverse set of clinical data, but in order 
to display any clinical data we must be able to transform it into numeric form. For some clinical 
measurements, such as Tumor Size, no transformation is required. Coded measurements are 
enumerated by assigning each code a numeric value. For example, a measurement such as ER 
Status may have three codes [“negative”, “positive”, “indeterminate”] that we numerically represent as 
“negative” = 0, “positive” = 1, and “indeterminate” = 2. To draw the clinical heatmap, each transformed 
clinical datapoint is assigned a color from a green-black-yellow colorspace, where negative numbers 



  

are given shades of green, zero is black, and positive numbers are given shades of yellow. The 
colorspace is scaled according to the minimum and maximum numeric value for each clinical feature 
separately. Clinical features that cannot be reasonably encoded via any means are not displayed in 
the clinical heatmap. 
 
Assessing relationship between ER status and classifiers in outcome prediction 
 
Mutual information of ER, classifier and outcome is used to evaluate the power of estrogen receptor 
status and/or classifier to predict clinical outcome. 

I(X;Y) is the amount of mutual information between variable X and Y. I(X; Y | Z) is the amount 
of additional information Y contributes to X given Z. 

In the Hess et al. dataset, the clinical outcome is path CR (pathologic complete response). 
Mutual information is computed using the original classifier to path CR the dataset has produced.  In 
the van de Vijver et al. dataset, the outcome is metastases, and mutual information is computed using 
a classifier of distant metastases developed by van ’t Veer et al.26 

In both studies, the classifier is more correlated with estrogen receptor status (ER) than with 
outcome (Row A, B).  However, classifier is still a better predictor to outcome compared to ER (Row B, 
C). Classifier contributes a significant amount of additional information at predicting outcome than ER 
alone (Row D). 

Mutual information is measured in bits. Logarithms to the base 2 are used in the calculation. 
Pseudo-counts amount to 5% of the total number of samples in each comparison. 
 
Implementing the UCSC Cancer Genomics Browser 
 
Database and display 
 
To produce the genomic or geneset heatmaps displayed in the UCSC Cancer Genomics Browser, 
microarray data stored in large bed15-formatted MySql tables must be condensed into a color image 
700 pixels wide. Clearly, when displaying whole-genome data or a dense geneset in such a 
constrained space, many microarray probes will fall under the same pixel.  Regardless of the view 
mode, all probe data located in the same pixel will be averaged together and that average value is 
used for that pixel’s color.  
 For “chromosome-view”, the UCSC Cancer Genomics Browser uses down-sampled versions 
of all microarray data tables in order to reduce the time necessary to draw the image, thereby 
improving the tool’s responsiveness. Down-sampled tables are created by breaking up the whole 
genome into approximately 3,000 bins and then averaging together probe data that fall within the 
same bin.  The down-sampled tables are used in lieu of the original “high-resolution” table when the 
image is currently displaying more than one chromosome.  When the image is zoomed in to a single 
chromosome, the high-resolution table is used to draw the image.     
 When the display is set to “geneset-view”, the image is split into distinct sections for each 
geneset. The width of each section is proportional to the total number of genes in its corresponding 
geneset, with a minimal width of 20 pixels so that small genesets are still readily visible. Each section 
is then divided equally among all genes in the geneset, where probes assigned to the same pixel are 
averaged together as before. Alternatively, some microarray datasets may have multiple probes that 
map to the same gene, and in these cases the region allocated for the gene is divided equally among 
the multiple probes. 
 
Use of Web2.0 technology  
 
The UCSC Cancer Genomics Browser heavily utilizes dynamic HTML and JavaScript, and as a result 
requires a modern browser to operate correctly. Firefox 3.0+ and Safari 3.0+ are fully supported on 



  

both Windows and OS X platforms. Some features of the Cancer Browser may not function correctly 
when using Internet Explorer at this time. 
 
Saving a session 
 
With the Web 2.0 framework, a new method is required to store a user’s session. Because the state of 
the user’s session is maintained entirely on the client computer, the client must communicate its state 
to the server to be stored in the server’s MySql database. In the current implementation, when the 
user clicks the “Save” button, the client sends the server a string formatted in JavaScript Object 
Notation (JSON) that fully describes the client’s state.  The user can then recall the saved session by 
pressing the “Load” button, at which point all of the user’s settings from the saved session are loaded 
into the client’s current workspace.   
 There are a few limitations with the current saving/loading mechanism.  Only a single session 
can be stored per user in the database. Also, since the session is stored in a database using the 
UCSC Genome Browser user ID, the same computer and web browser on which the session was 
initially saved must be used to load the session at a later time. Both of these limitations will be 
addressed in the near future, adding the ability to save and load multiple user sessions and easily 
share any saved session with collaborators. 
 
Current statistics available on the browser: 
 
The UCSC Cancer Genomics Browser has several statistical methods implemented currently: 
difference of means, Student's t-test, Wilcoxon rank-sum test, Fisher’s exact test, Fisher linear 
discriminant, Levene's and Brown-Forsythe tests of homogeneity of variance, and the Jarque-Bera 
test of normality.   

Difference of means computes the difference between the means of the two subgroups for 
each probe being compared.  The Student's t-test is a two-tailed test mapped to the Student's t 
distribution. It displays the p-value of each probe being derived from different underlying distributions 
in the two subgroups.  The Wilcoxon rank-sum test is a non-parametric alternative to the Student's t-
test that also displays p-values of the difference between the subgroups. The Fisher’s exact test 
analyzes the association of subgroups. It calculates the p-value of getting the observed level of 
unbalance between subgroups based on a hypergeometric distribution. The Fisher’s linear 
discriminant function finds the residual around the mean after subgrouping, then empirically calculates 
the p-value of obtaining such a residual by comparing to 100 permutations irrespective of subgrouping.  
Levene’s test finds the p-value (based on an a Student’s t distribution) of the groups having their 
observed variances if they are from the same distribution.  The Brown-Forsythe test is similar to 
Levene’s test but is calculated around the median rather than mean, so is more suited to measure 
variance differences in skewed distributions.  The Jarque-Bera test is a goodness-of-fit test that 
calculates the p-value the data in each subgroup is normally distributed given their skewness and 
kurtosis. The p-value of the subgroup that is most non-normal is displayed.  All p-values are displayed 
in log scale and coloring is based on the specific significance cutoff of 0.05. Bonferroni correction is 
available for all statistical tests and will scale the p-values based on the number of tests being 
performed. 
 
Current publically available studies 
 
The public site contains a rapidly growing body of publicly available cancer genomic data, including 21 
published studies, datasets from the TCGA consortium, and others. These correspond to roughly 
4,343 genome-wide experiments from 3,033 samples (Supplementary Table 2). 
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Supplementary Tutorial: Jump start on the UCSC Cancer Genomics Browser 
 
Step-by-step instructions to start a Cancer Browser session 
 

1. Begin by choosing a dataset you would like to view, and select “Heatmap” from the 
dropdown menu.  Here we’ve selected the Neve et al. cell line CGH dataset: 

 
 
The heatmap will load and appear above the list of datasets.  The heatmap on the left 
represents the copy number values of each probe across the genome (labeled below) 
with each pixel row representing a sample.  The feature information of each sample is 
represented by a heatmap on the right, with each feature labeled below it. Clicking on a 
feature will sort the samples (i.e. rows) accordingly. Secondary sorting using shift-
clicking breaks ties in the primary sort. 

 
 

2. To access feature configuration options, click on the blue bar to the right of the feature 
information.  This will show a new panel below the dataset: 

 
The currently displayed features are listed and can be removed by clicking the “X” 
symbol to the right of the text.  They can be reorganized by dragging and dropping the 
features in order.  Additional available features can be added through the dropdown 
menu above the list.  Clicking “Update Image” will refresh the feature heatmap above 
with the current features in the list in order.  For example, if we remove all but “Her2”, the 
feature heatmap will show only that feature: 
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3. To define subgroups, click the name of a feature in the list, which will display 
subgrouping controls for that feature (the red and green selection boxes in the image 
above).  By selecting the subset of features in each box and clicking the “Add 
Subgrouping” button, we can define two subgroups based on Her2 status: 

 
You can see the current subgrouping defined in the list on the right, and a new red/green 
bar appears next to the feature information allowing you to identify which samples 
belong to which subgroup.  The option to run statistics is displayed at the bottom. 
 

4. By selecting Student’s t-test from the statistics dropdown and Bonferroni from the next 
dropdown, we are able to run genome-level statistics to determine if there are any 
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regions of particular interest (with multiple hypothesis correction). 

 
5. We can see a small significant peak in chromosome 17.  By clicking on the heatmap at 

that position, we are able to zoom in to investigate the region further. 

 
Below the heatmaps, we can see the current coordinates of the zoomed image, as well 
as a button to jump directly to the UCSC Genome Browser: 

 
If we click into the UCSC Genome Browser, we can see that the Her2 amplicon is 
represented in that region, which explains the Her2 significance between the subgroups 
of samples we selected. 
 

6. Shift-clicking allows us to zoom back out to the full genome level, and we can switch 
between heatmap and summary view for the dataset: 

 
The summary view allows us to view the distribution of amplifications and deletions 
across the genome for a dataset.  Since we have subgroups defined, we will see a 
summary image which is split top and bottom for the two subgroups, as well as the 
statistic track below: 

 
We can remove the subgrouping and see a single summary view for the dataset: 
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These views allow us to quickly display large-scale genomic amplifications or deletions, 
as well as examine possible amplifications or deletions for specific subgroups of 
samples. 

 
 
 


