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1 Mobile Phone Data Preprocessing

In the anonymous call detail record (CDR) data set that we
obtained for the study area in 2010, each record is in the
following format: [ anonymized user ID, longitude, latitude,
time stamp (in seconds)] . The coordinates of the recorded
locations are estimated by the data provider using standard
triangulation algorithms. The location information is in much
higher resolution (with an accuracy of 200 to 300 meters)
compared to that in the traditional tower-based CDR data [1–
3]. This finer granularity enables us to identify user location
more accurately and allows us to apply data mining methods
previously tested for GPS records [4–6].

1.1 Extracting stays. The first step in the data processing
pipeline is to identify users’ stays and pass-bys (which are
records made when users are conducting activities or traveling)
from the raw data. As illustrated in Fig. S1, a stay-point
is identified from a sequence of consecutive mobile phone
records based on spatial and temporal thresholds. The spatial
threshold is a roaming distance when a user is staying at a
location, related to the accuracy of the underlying location
positioning technology. In this study, we set the roaming
distance of a stay-point as 300 meters. The temporal threshold
is the minimum stay time (e.g., 10 minutes) at a location,
measured as the duration between the first and the last record
observed at a stay-point. Once a stay-point is identified, its
location is set as the centroid of all records belonging to that
stay-point (e.g., s1 in Fig. S1 is the centroid of mobile records
p3, p4, and p5).

The second step is to cluster stay-points into stay-regions,
since stay-points identified from a user’s different trajectories
over time may refer to the same location although the trian-
gulated coordinates may not be exactly the same. We use a
grid-based clustering method to cluster stay-points into stay-
regions. The advantage of the grid-based clustering method
is that it sets the output cluster sizes—which is desirable
when we know that each location has a bounded size and the
accuracy of the records is within a threshold. In this study,
the maximum stay-region size is set as d = 300 meters. The
procedure to perform grid-based clustering is as follows: First,
divide the entire region into rectangular cells of size d/3. Next,
map all the stay-points to each cell. Then, iteratively merge
the unlabeled cell with the maximum stay-points and its unla-
beled neighbors to a new stay-region. Once a cell is assigned
to a stay-region, it’s marked as labeled. [5] discusses details
of this method. Illustrated in Fig. S1, the three stay-points
s1, s2, and s3 are clustered into one stay-region r1.

Among the 1.92 million users of the raw CDR data obtained
for the Greater Boston region—bigger than Metro Boston
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Fig. S1. Extraction of stays. Gray dots are raw mobile phone observations.
Green dots are extracted stay-points, and blue point represents the stay-region.

(which includes 164 cities and towns) defined by the Boston
metropolitan planning organization (MPO) [7]—1.66 million
users (86%) have at least one stay observation longer than 10
minutes in her raw CDR data over the 6-week period).

For the self-collected cell phone traces provided by a vol-
unteered individual for this research, different from the CDR
data, a record is made when the mobile application detects a
significant spatial movement. It is more likely that only one
record are kept in the data set at a stay location. To cope
with this characteristics, we (1) extract stay-points and stay-
regions with spatial and temporal thresholds; (2) go through
the records to search for points that are close (e.g. within 200
meter) to the existing detected stay-regions; and (3) add the
record as a stay-region (given the data recording mechanism
of the mobile application.)

1.2 Identifying location types: home, work, and other. To an-
alyze and model urban mobility, we need to identify users’
visited location types. For each extracted stay-region, we cate-
gorize it as home, work, or other. We label the most frequently
visited stay-region during weekday nights (between 7pm of
first day and 8am of second day) and weekend as the home
stay-region. 1.44 million users (75% of the 1.92 million) are
identified with home.

For a non-home stay, if its start time is during weekday
daytime (between 8am and 7pm), it is defined as a potential
work stay. The assumption to label a potential work stay into
a work stay is based on the rationale and historical evidence [8,
9] that for a given visitation frequency, trips with longer
distance are more likely to be work trips than those with
shorter distance, which are more likely to be for non-work
purposes (e.g., grocery shopping near home). For a user who
has an identified home location, we label her potential work
stay-region i as a work place if its distance from home (d′i)
times its visitation frequency (n′i) is the maximum among all
potential work stay-regions. We also restrict that a user’s
visitation to her work stay-region should not be less than 3
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times in the observation period (i.e., n′i >= 3), and its distance
from home should not be too short (e.g., d′i>500 meter). When
a potential work stay-region fulfills the above criteria, it is
labeled as work. Otherwise, it will be labeled as other. For
validation purpose, we focus on users whose home is within the
Metro Boston area defined by the Boston MPO [7]. Among
the 1.44 million users with home, 0.78 million have home
within Metro Boston, and 0.66 million have home outside
Metro Boston. Among the 0.78 million users whose home
are identified within Metro Boston, 0.42 million have been
identified with work stay-regions. Table S1 summarizes the
statistics for users with stays, homes and/or works derived
from the CDR data set. If users have few records, it will be
difficult to estimate their mobility parameters. We filter users
who have more than 50 identified stays and at least 10 home
stays in the observation period as active users, and derive a
set of 0.177 million such users in the study area.

Table S1. Summary of CDR user statistics

Millions Percentage

Users in the raw data set 1.92 100%
Users with stays (duration > 10min.) 1.66 86%
Users with "home" 1.44 75%

within Metro Boston 0.78 41%
outside Metro Boston 0.66 34%

1.3 Validating home and work. By using the 2010 census popu-
lation data and the 2006-2010 Census Transportation Planning
Products (CTPP) data, we validate the identified home and
work locations of the 0.78 million users within Metro Boston
at the city and town level. To expand these 0.78 million users
to population of the Metro Boston, the number of home stay-
regions are aggregated to Census tracts of the Metro Boston.
An expansion factor is calculated for each tract as the ratio
of the 2010 Census population and the number of residents
identified in the CDR data set. For Census tracts with fewer
than 10 CDR residents (around 10 in the study area), the
expansion factor is set to 0 to ensure that we do not overweight
users that are not representative for a given Census tract.

Fig. S2 shows respectively the comparison of (a) residen-
tial and (b) employment population at town-level between
2010 Census data and the CDR estimates, and between the
2006-2010 Census Transportation Planning Products (CTPP)
[10] data and the CDR estimates, for both before and after
expanding the CDR data. The town-level correlation between
the CTPP employment data and the estimated CDR employ-
ment is 0.99, and the sample expansion method adjusts well
for the difference in magnitude. The total expanded CDR
users with workplace is 2.3 million, while the CTPP reports
a total of 2.1 million. This strong correlation is noteworthy,
considering that each user’s home and work locations were
expanded based on their home location only.

2 Modeling Commuters

Commuters have three types of location including home, work,
and other. We model work as an activity occurring at a fixed
location (determined from the CDR data) with predetermined
fixed duration.

a b

Fig. S2. Validation of the home and work labeling for the 0.78
million CDR users with detected home in the Metro Boston
at the city and town level. (a) 2010 Census population v.s. CDR estimated
residents at town-level before and after population expansion. (b) 2006-2010 CTPP
[10] workers v.s. CDR estimated workers at town-level before and after population
expansion.

2.1 CDR data and temporal features of the work activity. From
common knowledge, we know that the majority commuters
usually go to work in the morning and finish work in the
late afternoon, and they may have work breaks during work
hours. However, we find that the CDR data do not seem
to capture well the temporal features of the work activities—
namely, the work start time, duration and the presence of
work-breaks. Fig. S3 compares the distribution of the start
time and duration for work activity between CDR active users
and the 2009 National Household Travel Survey (NHTS). It
can be seen from the NHTS that two peaks (around 8am
and 12pm, respectively) exist in the work start time and two
peaks (around 4 hours and 8 hours, respectively) in the work
duration. The two peaks in start time and duration are caused
by breaks during working hours. In fact, both the 2009 NHTS
and the 2010 American Time User Survey (ATUS) [11] show
that around 20% workers have 1 work-break outside their
workplace (which generates trips from workplace during the
break.)

To overcome the shortcoming of the CDR data, we model
the fixed work time for commuters detailed in the following
subsection. If large scale mobile phone data with high fre-
quency are available in the future, work time could be observed
from mobile phone data.

a b

Fig. S3. Distribution of observed work start time and duration
Marginal distribution of (a) work start time and (b) work duration. Note: The CDR data
does not compare well with the survey data, not capturing well the beginning and end
of the work trips.

2.2 The modeling approach. To model the fixed work activity
for a commuter, we sample from a joint distribution of work
start time and duration, and introduce stocastically a work-
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break to allow for flexible activities during the break period.
To be more specific, the detailed steps are as follows:

• We generate a pair of work start time (tw0) and work
duration (∆tw) from a 2-D Gaussian mixture distribution
for each commuter (see Section 2.3 for details). Note that
this tw0 is simply the beginning of work in a day (on a
weekday), and ∆tw simply measures work duration from
beginning to end in the day.

• We introduce a parameter (θ) to stocastically determine if
a commuter will take a work-break. We randomly generate
a number x ∼ U(0, 1). If x<θ, the commuter will have
a work-break outside workplace. We fix the proportion
of commuters to have work-break outside workplace, θ =
0.20.

• If the commuter takes a work-break, we then generate a
work-break duration (∆tb) and a work-break start time
tb0 from two distributions, respectively (see Section 2.4
for details). With the generated tb0 and ∆tb, we then
update the work time-slots which are now split by the
work-break.

On a weekday, for a commuter with predetermined tw0
and ∆tw, and tb0 and ∆tb (if she takes a work-break), the
TiemGeo model is applied to fill the rest time slots that are
not occupied by work activities. Fig.S4 demonstrates how the
model works for commuters.

As illustrated in Fig. S4 (a), on a sample weekday, a user
is predetermined to stay at workplace from 9 am to 5 pm with
no work-break. The proposed TimeGeo model will fill the
rest time slots. The user will make a trip to work at 9 am,
independent of her activity before 9 am (the blue slot). She
will move from work after 5 pm (the green slot), but whether
to go home or to other location is simulated by the TimeGeo
model. Similarly, in Fig. S4 (b), a user is first predetermined
to work from 9 am to 5 pm and take a break outside workplace
between 1 pm and 2 pm. The model works the same as in
(a) for the time slots before 9 am and after 5 pm. For the
work-break, the user will definitely make a trip from work after
1 pm (the cyan slot) and then move back to work at 2 pm.
She decides where to go in the break based on the TimeGeo
model. The user could visit multiple other locations during
the break, simulated by the TimeGeo model.
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Fig. S4. Modeling commuters. For commuters with fixed work activity and (a)
with no work-break, (b) with work-break. Work start time and duration, and break start
time and duration are predetermined from distributions discussed later.

2.3 Work start time and duration. To characterize the statistic
of work start time (tw0) and work duration (∆tw) from
alternative data sources, we use NHTS and ATUS to estimate
the joint distributions of tw0 and ∆tw. We fit the data with
a mixture of multivariate normal distributions, and use a

Gaussian Mixture Model (GMM) [12] to estimate parameters
of the following joint distribution f(x|µ1,Σ1, ..., µK ,ΣK) =∑K

k=1 πk
1

2π
√
|Σk|

exp
(
− 1

2 (x − µk)>Σ−1
k (x − µk)

)
, where

K(> 0) is the number of modes (distinct local maxima), x =

(A,B)>, µk = (µkA, µkB)>, Σk =
(

σ2
kAA covkAB

covkAB σ2
kBB

)
, A

stands for tw0, B stands for ∆tw, πk is the mixing coefficient,∑K

k=1 πk = 1.
We find that three clusters (K = 3) best fit the empirical

data. It is in good agreement with existing studies on the tem-
poral behavior of workers’ daily activity patterns found in [13]
(e.g., early workers, regular workers, and late workers). Fig. S5
presents the marginal distributions of tw0 and ∆tw estimated
from the 2010 NHTS and 2009 ATUS data, respectively. The
results are quite similar, and we use the set of parameters from
NHTS to jointly generate tw0 and ∆tw: K = 3, π1 = 0.17,
π2 = 0.29, π3 = 0.53, µ1A = 12.8, µ2A = 7.9, µ3A = 7.6,
µ1B = 6.6, µ2B = 7.5, µ3B = 9.0, σ1A = 3.7, σ2A = 1.5,
σ3A = 1.0, σ1B = 4.4, σ2B = 3.2, σ3B = 0.9, cov1AB = −4.3,
cov2AB = −2.6, cov3AB = −0.3. (Time units are in hours.)

a b

Fig. S5. Marginal distribution of work start time (tw0) and du-
ration (∆tw). Note: tw0 represents the beginning of work in a day. ∆tw simply
measures work duration from beginning to end in a day. Parameters are estimated
from a 2-dimensional GMM.

2.4 Work-break start time and duration. To characterize work-
breaks from data, we first estimate the distribution of their
duration (∆tb) from the NHTS and AUTS, shown in Fig.
S6 (a). The probability density of ∆tb follows a log-normal

distribution, i.e., P (∆tb) = 1√
2πσ∆tb

e
− (ln ∆tb−µ)2

2σ2 , where µ =
3.9, σ = 0.9 (time unit in minute). Note, in the simulation,
when generating ∆tb, we make sure that ∆tb<∆tw.

From common knowledge, work-break start time (tb0) peaks
in the middle of work, although it may occur anytime during
work. We measure the distribution of the normalized deviation
of work-break midpoint (tbm) from the work midpoint (twm),
noted as Dbw = tbm−twm

∆tw−∆tb
, from the 2009 NHTS data, shown in

Fig. S6(b). We find that Dbw follows the following truncated
Cauchy distribution P (Dbw) = 1

πγ
· γ2

(Dbw−x0)2+γ2 , where x0 =
0.0, γ = 0.1, −0.5 < Dbw < 0.5 (since a work-break has to
start after work starts and end before work ends). For the
simulation of work-breaks, we randomly draw a Dbw from the
truncated Cauchy distribution, and then determine the work-
break start time according to tb0 =tbm−0.5∆tb =tw0 +(∆tw−
∆tb)(0.5 +Dbw). With the generated work-break start time
and work-break duration, we then update the work time-sots,
splitting them by the work-break.

Although the above parameters are estimated using NHTS
data for consistency check, we do not think that expensive
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a b

Fig. S6. Model for work-break. (a). Empirical distribution of work-break
duration ∆tb. (b) Empirical distribution of the normalized deviation of work-break
midpoint from the work midpoint, Dbw , (−0.5 < Dbw < 0.5).

travel surveys are necessary for the purpose of modeling typical
work activity (i.e., work start time, work duration, work-break
duration, work-break start time).

3 Model Parameter Estimation

3.1 Population travel circadian rhythm. For each day in an
average week, we measure the population travel circadian
rhythm as the probability of traveling to and from flexible
activities in every 10-minute time slot t, which is denoted
as P (t). Since commuters’ work activities are modeled as
fixed choices, the probability P (t) for commuters does not
include trips to and from the work activity. In other words,
in a time slot t, only if a commuter travels to and from either
home or other (not work), the trip is counted towards the
probability of P (t). We measure P (t) separately for commuters
and non-commuters, as shown in Fig. S7. For an average
commuter, her travel rate to and from flexible activities is
not high during working hours, but peaks around 6 pm on
weekdays; the peaks at weekend are higher than those on
weekdays. For an average non-commuter, her travel rate of
flexible activities during weekday working-hours is higher than
that of an average commuter; and the peaks of the travel rate
are lower at weekend than on weekdays.

x10
-3

-Commuter

Fig. S7. Circadian travel rhythms for commuters and non com-
muters. Note: Because the fixed activity—work—is not determined by the Markov
model, travels to and from work for commuters are excluded from the measure of
P (t).

3.2 Exploration and preferential return (EPR) parameters. In
this section, we illustrate that while we estimate global param-
eters from the CDR data to simulate the EPR mechanisms, in
contrast to the results of the original EPR model, we find dif-
ferences among individuals. The individual heterogeneity are

now captured by the newly introduced weekly trips (nw) and
the two individual parameters of the Markov model. Fig. S8
(a) shows that for different S groups, the number of visited
distinct locations S(t) versus time follows S(t) ∼ tµ. For S
group: 5-10, µ = 0.54; S group: 10-20, µ = 0.68; S group:
20-30, µ = 0.76; S group: 30-40, µ = 0.80.

Fig. S8 (b) shows that for users with different distinct
locations (S), their visitation frequency to the Lth most visited
locations fL follows: fL ∼ L−ξ, with ξ = 1.2± 0.1, similar to
the finding in [2]. We estimated global EPR parameters for
model Pnew = ρS−γ , with ρ = 0.6 and γ = 0.21. Our finding
is consistent with [2], which showed that ξ = 1 + γ, if γ > 0.
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Fig. S8. Empirical results on the exploration and preferential
return (EPR) parameters estimated from the CDR data of
active users. (a) the number of visited distinct locations S(t) versus time for
different S groups, (b) the visitation frequency to the Lth most visited locations fL
follows: fL ∼ L−ξ , with ξ = 1.2 ± 0.1

3.3 Individual mobility parameters. Fig. S9 illustrates the
Markov model of transition probabilities at Home (H) or Other
(O) in a 10-minute time-slot t for a non-commuter. We show
in this example two other states to demonstrate the current
other state, and a consecutive new other state. In time-slot t,
when an individual is at home, her probability of staying home
is P1 = 1− nwP (t). Her probability of traveling to an other
location is nwP (t). When she is not at home, but at an other
location, the individual is in an active state—her probability
of staying at the current other location is P2 = 1− β1nwP (t),
and her probability of visiting a consecutive other location
is P3 = β1nwP (t)β2nwP (t). When she moves from an other
state, she can either choose to go to an additional other lo-
cation with probability P3, or go home with a probability
P (O → H) = 1 − P2 − P3 = β1nwP (t)(1 − β2nwP (t)). To
ensure that a person will go home at the end of the day, we
add a condition that after certain hour in the late afternoon
(e.g., 5 pm) the individual’s returning home probability is the
maximum value of P (O → H) and (1− P (t)

max(P (t)) ).

P H O
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1
-P

 -P
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3

1-P -P
2 3 P 2
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Fig. S9. Illustration of the Markov model of transition probabil-
ities between Home and Other state in a 10-minute time-slot t
for a non-commuter.
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We now show the empirical individual parameters mea-
sured for active commuters (133, 448 individuals) and non-
commuters (43, 606 individuals). The joint distribution of
parameters nw, nwβ1 and nwβ2 is in Fig. S10. The median
values of nw, nwβ1 and nwβ2 for non commuters are 7.4, 34.2,
and 355.6, while the values for commuters are 5.7, 21.2, and
286.7. The two dimensional marginal distributions are shown
by the contour plots.

Fig. S10. Joint distribution of parameters nw, nwβ1 and nwβ2.
Parameter distribution for (a) non-commuters, and (b) commuters.

The marginal distribution of each parameter is in Fig. S11.
The distribution of nw and nwβ1 could be approximated by
log-normal distributions while the distribution of nwβ2 is
approximated by Weibull distribution. The corresponding
estimation results are also shown in Fig. S11.
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Fig. S11. Marginal distribution of parameters nw, nwβ1 and nwβ2.
for (a-c) non-commuters, and (d-f) commuters.

4 Model Simulation and Validation

TimeGeo is a platform that can be used to simulate individ-
ual daily mobility trajectories at fine temporal and spatial
resolution, and help researchers, planners, and policy makers
understand urban mobility from individual level to metropoli-
tan level.

4.1 At the individual level. With technology that can capture
individual spatiotemporal mobility records more accurately
and completely, such as the one demonstrated by the student
volunteer’s data recorded by a mobile phone application (Fig.
4), TimeGeo can be used to simulate individual daily mobility
patterns similar to the observed ones shown in mobile phone
data without additional data inputs. Fig. S12 presents the
comparison between the mobile phone data for this volunteer
user and simulated results on the distributions of (a) daily vis-
ited location numbers, (b) activity stay duration, (c) location
visitation frequency for the Lth most visited locations, and
(d) trip distance. (The user’s trip distance is dominated by
travel between home and school.)
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Fig. S12. Simulation results for the volunteer student (shown in
Fig. 4): Distributions of (a) number of daily visited locations; (b) stay duration; (c)
visitation frequency of the Lth most visited location; and (d) trip distance.

To give another example, Fig. S13 presents a comparison
between observed and simulated trajectories of two representa-
tive individuals. The background red color shows the density
of other locations. In the simulation, the home location and
the number of visits to home are kept unchanged for each
person. Visits to other locations are modeled using the rank-
based EPR mechanism. The β1 and β2 parameters for each
person are calibrated using their CDR data. The weight of
each line represents the visitation frequency. The star symbol
shows the home location of the individual. It is noteworthy
that both the CDR data and the simulated trajectories show
that if a person’s home is far from areas with dense other
locations, she tends to travel longer distance more frequently.
On the other hand, if the person’s home is in the city center
(with dense other locations nearby), her tendency to travel far
is lower.
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Fig. S13. Spatial comparison of observed vs. simulated trajecto-
ries for two representative individuals—one user in gray and
the other in green.

4.2 Daily mobility motifs. In addition to the number of daily
visited locations, the model is able to capture similar daily mo-
bility motif distribution revealed from the CDR data. Fig. S14
(a) is the aggregated motif distributions for all active users.
The empirical data are in blue and the simulation results are
in green. As a guide to the eye, two dashed lines at 1% and
5% are shown in the figure. The most popular trip motif is
traveling between two locations. Fig. S14 (b) shows the motif
distribution for commuters and non-commuters separately. To
show the less popular motifs clearer, we plot the distribution
in log scale in the inset of each figure. In general, the more
complex a motif is, the lower the percentage is.
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Fig. S14. Motif distributions. (a) Motif distribution for all active users, shown
in linear and log scale (inset figure). The two dashed horizontal lines are respectively
1% and 5%. (b) Motif distribution for commuters and non commuters (inset figure is in
log scale).

4.3 At the metropolitan level. With the assumption that young
children are not represented by the CDR data set, we simulate
the mobility trajectories in Metro Boston for population aged
16 years and over (to be consistent with the census data, e.g.,
American Community Survey). We expand the active phone
users to the population aged 16 and over (i.e., 3.54 million
people) in Metro Boston. We derive two sets of expansion
factors, to expand active commuters to 2.10 million workers
and expand active non-commuters to the rest 1.44 million
non-workers, at the census tract level respectively (data avail-
able from American Community Survey). Fig.S15 shows the
distribution of expansion factors for (a) commuters, and (b)
non-commuters.
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Fig. S15. Expansion factor distributions. Top figures show the spatial
distribution of expansion factors to expand the active CDR users whose home are in
the census tracts: (a) to expand commuters to the total employment population, and
(b) to expand non-commuters to non-employment population (above 16 years old)
in the census tract. Bottom figures show the probability density distributions of the
expansion factors for (a) commuters and (b) non-commuters.

Fig.S16 shows the distribution on (a) stay duration (∆t), (b)
daily visited location (N), (c) trip distance (∆r) for simulation
of active phone users (for both commuters and non-commuters)
as well as survey data, including the 2009 NHTS [14], and
2010-2011 Massachusetts Travel Survey (MTS) [15]. We also
included sensitivity analysis for the simulation on the sample
sizes and number of simulation days to demonstrate their
implications on the simulation results. Note that we do not
include the travel distance distribution from NHTS for com-
parison, given that spatial aspects of travel are affected more
directly (than the temporal aspects) by urban form, which
varies across the nation [16].
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Fig. S16. Population distribution comparison: simulation and
travel survey data—including 2009 National Household Travel
Survey (NHTS), and 2010-2011 Massachusetts Travel Survey
(MTS). (a) Stay duration distribution. (b) Daily visited location distribution. (c) Trip
distance distribution.
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The sensitivity analysis shows that when the simulation
sample size is comparable to that of the survey, the number
of daily visited locations of the simulation is similar to the
survey. When the simulation sample size is larger than that of
the survey, or the simulation days are more than 1 day (while
the survey is only for 1 day), the simulation reveals higher
proportion of large number of daily visited locations.

Based on the model discussed in the paper, we keep home
and work locations and stay location records of active users
to simulate daily trajectories of the expanded 3.54 million
individuals who are over 16 years old and reside in the Metro
Boston area. Note that our simulation allows trips to and
from other type locations beyond the Metro Boston boundary
as presented in the active mobile phone users’ records. Fig.S17
compares the simulated daily trips per person by trip purpose
and by time period with the Boston MPO travel demand
model for years 2010 [7] and 2007 [17]. The MPO models
follow the traditional four-step modeling of trip generation,
trip distribution, mode choice, and trip assignment. The
trip purposes include (1) home-based work (HBW), (2) home-
based other (HBO), and (3) non-home-based (NHB). The time
periods include AM peak (6 am-9 am), midday (MD) (9 am-3
pm), PM peak (3 pm-6 pm), and rest-of-day (RD) (6 pm-6
am). We also include the 2010-2011 MTS data for comparison.

Fig. S17. Comparison against baseline (c.a.b.)—2010 and 2007
Boston MPO travel demand models—at the person level. Note:
Values closer to zero mean simulation results are with small differences from the base
line. Simulation is only for population older than 16 years old (3.54 million persons in
2010). Boston MPO 2010 model is for total population (4.46 million persons in 2010)
excluding school trips (categorized as the HBO trips). Boston MPO 2007 model is for
total population (in 2007) including all trip types. The 2010 MHT data presented here
only include trips made by individuals aged 16 and over.

The comparisons between our simulation and the MPO
models shown in Fig.S17 only include trips within the Metro
Boston area, even though the TimeGeo model also simulated
trips outside the region. Note that the Boston MPO 2010
model is for all aged population including 4.46 million persons
(in year 2010) but excluding school trips, and the MPO 2007
model is for all aged population in year 2007 including all
trip types (school trips are included in the HBO category).
To make the comparison meaningful, we look at daily trips
per person. In general, the simulated HBW trips, and trips

in the AM, PM and RD periods are in good agreement with
the MPO 2010 model. The simulated HBO and midday trips
are noticeably less than those estimated by the MPO 2010
model. When considering all trips (including those beyond the
metropolitan boundary) by TimeGeo, the results simulated
by TimeGeo, the 2010 MPO model, the 2007 MPO model,
and the 2010 MTS, for [HBW, HBO, NHB, daily] trips, are as
follows: [0.74, 0.74, 1.42, 2.90], [0.67, 1.60, 0.63, 2.90], [0.63,
1.58, 0.99, 3.20], [0.62, 1.39, 0.73, 2.74]; for [AM, MD, PM,
RD] trips, the results are [0.34, 0.86, 0.64, 1.06], [0.33, 1.50,
0.57, 0.54], [0.51, 1.08, 0.82, 0.78], [0.34, 0.98, 0.61, 0.80]— all
units are in daily trips per person.

Fig. S18 shows the departure time of travel by trip purpose.
The comparisons are among the TimeGeo simulation, 2009
NHTS, and 2010-2011 MTS (extracted for residents within
Metro Boston). The patterns for HBW, and all trip purposes
are similar among the three sources. The simulation does
not have a morning peak for HBO trips—the potential reason
might be that we are not simulating school trips, while travel
surveys include those trips. The simulation has a higher
fraction of NHB trips in the early evening compared with
those of the surveys, which may be due to the fact that people
tend to omit their short out-of-home stops when reporting in
the travel survey.
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Fig. S18. Comparison of travel departure time among TimeGeo
simulation, 2009 NHTS data, and 2010 MTS data, for trips
by purpose of home-based work (HBW), home-based other
(HBO), non-home-based (NHB), and all types (All).

Fig. S19 shows the comparison of origin-destination (OD)
trips by trip purpose and by time period between the TimeGeo
simulation and the Boston MPO 2010 model at the city and
town level (with inter-town and intra-town trips separated).
Correlation of the intra-town estimation between the two
models are very good (the Pearson correlation coefficients are
between 0.99 and 1.0), and those for the inter-town estimation
are relatively lower. Since the employed population for the two
sources are the same, the correlation between the simulation
and the MPO model is very good for HBW and AM peak
period. Due to the differences in population for non-workers
(i.e., the TimeGeo simulation only includes population aged 16
years and above, while the MPO model includes population for
all age groups), simulated trips for HBO and NHB purposes
within the MPO region are systematically lower than the MPO
model estimates. Meanwhile, since the TimeGeo simulation
includes trips to or from other locations outside the MPO
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boundary (as represented by the active mobile phone users’
records), the simulated HBO and NHB trips can go beyond
the Metro boundary. Therefore the simulated trips bounded
within the MPO region can be less than the estimates of the
MPO model. However, the correlation between the two models
are still very high (e.g., above 0.75 even for inter-town trips).

SimulationSimulation

Fig. S19. Comparison of Origin-Destination(OD) trip tables at
the city and town level: TimeGeo simulation (x-axis) and
Boston MPO 2010 model (y-axis). Note: TimeGeo simulation is only
for population who are aged 16 and over (i.e., 3.54 million persons) and whose
trips are within the Boston MPO region, while the Boston MPO 2010 model is for
population of all age groups (i.e., 4.46 million persons) within Metro Boston. The
simulation allows trips to and from other type locations beyond the Metro boundary as
presented in the active mobile phone users’ records. The OD comparisons between
the TimeGeo simulation and the MPO model shown here only include trips within the
same region.

5 The Multiplicative Cascade Framework

5.1 Parameter estimation in β-log-normal cascade. The pa-
rameters of a β-log-normal cascade can be estimated from the
moments of point density at different tile levels. A hallmark
of multi-fractality is that the moments of the measure density
D′i = Di/|Ωi| are power functions of the resolution 2i,

E[D′qi ] ∝ 2iK(q) [S1]

where K(q) = log2(E[W q
D]) is a concave function. Hence,

multi-fractality holds if the log-log plots of the moments against
resolution are linear and K(q) is the slope of those linear plots.
For β-log-normal cascades, K(q) is a quadratic function,

K(q) = −(log2PD)(q − 1) + VD
2 (q2 − q) [S2]

with β parameter PD and log-normal parameter VD =
σ2
WD

/ln(2). There are different ways to estimate these pa-
rameters using the K(q) function. A simple one is to use

the empirical values of K(0) and K(2). Then PD = 2K(0),
VD = K(2) +K(0). If K(0) = 0, then PD = 1 and the cascade
is purely log-normal, and if K(2) = −K(0), then VD = 0 and
the cascade is purely β. If the moments do not scale with reso-
lution, one may use the local moment slopes at resolution level
i = 1, 2, ... to estimate Ki(q) and obtain an approximation of
resolution-dependent parameters PDi and VDi .

To estimate the correlation coefficient in the bivariate cas-
cade generators [WSi ,WDi ], we write their relationship with
the measured density at tile i and i− 1 as:[

D′i
S′i

]
d=
[
WDi 0

0 WSi

][
D′i−1
S′i−1

]
[S3]

E[S′iD′i] = E[WSiWDi ]E[S′i−1D
′
i−1] [S4]

E[WSiWDi ] = µS′
i
µD′

i
+ cov[WSi ,WDi ] [S5]

If [WSi ,WDi ] are joint log-normal variables,√
cov[WSi ,WDi ] = e

√
ρLNiσWDi

σWSi − 1 [S6]

ρLNi is the correlation coefficient of ln(WSi) and ln(WDi).
In the above equations, E[SiDi] can be estimated from the
density count at each i-tile, µSi , µDi are 1, σWDi and σWSi are
estimated from the local slopes of the moment plot. Therefore
ρLNi could be estimated from the data. The calculation for
β cascade is similar. The various moments of the empirical
supply and demand density distributions D′i = Di/|Ωi| and
S′i = Si/|Ωi| are shown in Fig. S20 (a-b).
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Fig. S20. Parameter estimation in the cascade point generation
model. (a-b) Moments of the empirical density of demand D′i and supply S′i at
different tile levels i and moments q. The slope of the moment plot is used to estimate
the parameters of the β-log-normal cascade.

The slope of the moment 0 and 2 plot of home location
KD(0), and KD(2) are in Table. S2. Thus we can calculate
PD and VD accordingly. Similarly, we can use the moment
plot of other location to infer PS and VS . P = 1 indicates
pure log-normal cascade and V < 0 indicates the cascade is
better represented by a pure β cascade. Thus for the home
location distribution, at the 4 larger tile levels the cascade is
approximately pure log-normal while at the 4 smaller levels the
cascade is approximately pure β. The correlation coefficient
between supply and demand could then be estimated. The
result is also in Table. S2. It drops from 0.92 at the coarsest
granularity to 0.23 at the finest granularity.

In the absence of data, these parameters can be used to
simulate home and other location distributions in the area.
The comparison of the real vs. simulated location distributions
is shown in Fig. S21.
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Table S2. Multiplicative cascade model estimation result

Level
1 2 3 4 5 6 7 8

KD(0) 0 0 0 -0.06 -0.37 -0.77 -1.06 -1.27
KD(2) 0.61 0.38 0.75 0.35 0.26 0.47 0.7 0.77
PD 1 1 1 0.95 0.77 0.59 0.48 0.42
VD 0.61 0.38 0.76 0.28 -0.11 -0.3 -0.36 -0.49
PS 1 1 1 1 0.97 0.87 0.71 0.59
VS 0.69 0.45 0.85 0.44 0.24 0.17 -0.04 -0.35
ρ 0.92 0.59 0.72 0.76 0.77 0.78 0.45 0.23

ba

c d

Home
Other

Home Simulated Other Simulated

Fig. S21. Real and simulated location distributions. (a,b) are the
density plots of the extracted home and other locations from the cell phone data. (c,d)
are the simulated densities using the calibrated cascade point generation model.

The simulated distribution could reflect that there is a cen-
ter of densely distributed locations in the Boston area, while in
the peripheral areas the locations are sparsely distributed. The
influence of the correlation coefficient and standard deviation
in the log-normal cascade is shown in Fig. S22.
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Fig. S22. Illustration of the joint log-normal cascade with differ-
ent standard deviation and correlation coefficient.

5.2 Analytical characterization of trip distance. The multi-
plicative cascade framework can analytically characterize trip
distances. It is important to predict distance traveled depend-
ing on the distribution of population (demand) and facilities
(supply). P>(i) measures the probability that a generic trip
goes outside its origin tile at resolution level i. To calculate
P>(i), first of all, the probability to choose rank k location is

P (k) = ζk−α [S7]

ζ is the normalization factor. The probability to choose within
the closest k opportunities is:

P<(k) = ζ1−α + ζ2−α + ...+ ζk−α

≈ ζ
∫ k

1
x−αdx = ζ

1− α (k1−α − 1) [S8]

Assume there are M opportunities in the region, then
P<(M) = 1

ζ

1− α (M1−α − 1) = 1 [S9]

ζ = 1− α
M1−α − 1 [S10]

To obtain tile exceedance probability P>(i), consider a
generic trip with origin in Ω0 and denote by [Si,trip, Di,trip]
the random supply and demand in the sub-region Ωi where
the trip originates. Then the probability to travel outside tile
i is

P>(i) =
∫ M

1
P>(k)fSi,trip(k)dk [S11]

where the probability density function (PDF) fSi,trip can be
calculated as follows. The PDF of Di,trip is related to the
PDF of Di as

fDi,trip(D) ∝ f(i|Di = D)× fDi(D) ≈ DfDi(D) [S12]

and the conditional distribution of [Si,trip|Di,trip] is the same
as the conditional distribution of [Si|Di] . Therefore

fSi,trip(S) =
∫ P

0
fDi,trip(D)fSi|Di=D(S)dD [S13]

P is the population. To obtain the distribution of ln(Si,trip),
we first calculate the PDF of Di,trip. After some algebra, one
obtains

fDi,trip(D) = 1
D
√

2πσD
e−[D−(mD+σ2

D)]2/2σ2
D [S14]

meaning that ln(Di,trip) has normal distribution with mean
value mD + σ2

D = ln(D04−i) + 1
2σ

2
D and variance σ2

D. We
also note that the conditional variable [lnSi|Di] has normal
distribution with mean value and variance given by

mlnSi|Di = mS + ρ
σS
σD

[ln(Di)−mD] [S15]

σ2
lnSi|Di = σ2

S(1− ρ2) [S16]

Then ln(Si,trip) ∼ N(mS + ρσSσD, σ
2
S), where mS =

ln(S04−i)− 1
2σ

2
S . We denote mS + ρσSσD as µ and σ2

S as σ2.
Then µ and σ are the mean and standard error of ln(Si,trip).
For a log-normal cascade

P>(i) =
∫ M

1
(1− ζ

1− α (k1−α − 1))×

1√
2πσk

e−(lnk−µ)2/2σ2
dk [S17]
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This integration could be solved:

P>(i) =
e
− µ2

2σ2 (ζe
(µ−(α−1)σ2)2

2σ2 )erf( (α−1)σ2−µ+lnx√
2σ )

2(α− 1) |x=M
x=1 −

(α− ζ − 1)e
µ2

2σ2 erf(µ−lnx√
2σ )

2(α− 1) |x=M
x=1 [S18]

where erf is the error function.
The sensitivity analysis of the influence of different param-

eters (α in the rank selection mechanism, σD, σS , and ρ in
the cascade model) on the tile exceedance probability P>(i) is
shown in Fig S23. Each time we change one parameter value
and fix other parameter values to their calibrated values in Ta-
ble S2. In Fig S23 (a, b), we change the standard deviation of
the log-normal cascade σD, σS from 0.3 to 0.9. As is shown in
Table S2, S and D have positive correlations, so large σD will
cause trip origins to concentrate in tiles with high supply S,
which causes the tile exceedance probability to decrease. The
standard deviation of the demand σD has a more significant
influence on P>(i). Fig S23 (c, d) shows that P>(i) is most
sensitive to the rank selection parameter P (k) ∼ k−α. Smaller
α means people are less sensitive to trip distance, resulting
in longer trip distance and higher tile exceedance probabil-
ity. Fig S23 (e, f) shows that when the correlation coefficient
between the demand and the supply ρ changes from -1 to 1,
the level 4 tile exceedance probability changes from 80% to
60%. Negative correlation causes the separation between trip
origins and destinations, which increases trip distance.
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Fig. S23. Sensitivity analysis of different parameters on P>(i)

6 Analytical Derivation of P (N) and P (∆t)
6.1 Derivation of P (N), the number of daily visited locations.
The power of the Markov framework is that we can analytically
derive some of the observed features. Although in the long
term observation people could return to any previously visited
location, in the calculation in P (N) as a simplification we
assume in one day a person could only return to her home and
work location (any other location will be visited only once in
one day). This assumption has been validated in [18].

We subdivide the whole day into T time slots and define a
state space of the Markov chain Yt as

Ω = {(x, i);x = 0, ..., T − 1; i = 0, 1} [S19]

where x denotes how many different locations were already
visited and i denotes whether a person is at home (i = 0) or
away (i = 1). For example, (2, 1) means the person has visited
2 locations in this day and now she is not at home. Then it
could be shown that the probability of finding our system in
the state YT = N (i.e. N different locations were visited in T
time slots) is:

P (YT = N) = ξ0(
T∏
t=1

Λt)UT (CN ) [S20]

with ξ0 being the initial condition (we always start at home)
and U =

∑
r:ar∈cN

Ur where Ur is a vector of size 2(T − 1)
with all values zeros except unity at the place corresponding
to a state ar belonging to the subspace CN = {(N, 0), (N, 1)},
Λt is a time dependent transition probability matrix, which
is calculated according to the following rules: (T − 1, 1) →
(T − 1, 1) and (T − 2, 0) → (T − 2, 0) are absorbing states;
otherwise the transition probability can be generated from
the Markov state transition diagram. For example for T = 5
the initial condition vector is ξ0 = (1, 0, 0, 0, 0, 0, 0, 0) and
U = (0, 0, 0, 0, 0, 1, 1, 0) for Y5 = 3, (CN = (3, 0), (3, 1)). To
simplify the notation, we define nwP (t) as P(t). The transition
probabilities Λt are:

(0, 0)→ (0, 0) : 1− P(t)
(0, 0)→ (1, 1) : P(t)
(1, 0)→ (1, 0) : 1− P(t)
(1, 0)→ (2, 1) : P(t)
(1, 1)→ (1, 0) : β1P(1− β2P(t))
(1, 1)→ (1, 1) : 1− β1P(t)
(1, 1)→ (2, 1) : β1P(t)β2P(t)
(2, 0)→ (2, 0) : 1− P(t)
(2, 0)→ (3, 1) : P(t)
(2, 1)→ (2, 0) : β1P(t)(1− β2P(t))
(2, 1)→ (2, 1) : 1− β1P(t)
(2, 1)→ (3, 1) : β1P(t)β2P(t)
(3, 1)→ (3, 0) : β1P(t)(1− β2P(t))
(3, 1)→ (3, 1) : 1− β1P(t)
(3, 1)→ (4, 1) : β1P(t)β2P(t)
(3, 0)→ (3, 1) : 1; (4, 1)→ (4, 1) : 1

We can use P (YT = N) = ξ0(
∏T

t=1 Λt)UT (CN ) to calculate
the probability to visit N locations in a day.
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6.2 Derivation of P (∆t), the stay duration distribution. Simi-
larly, we can also calculate the stay time distribution. In
the proposed Markov model, stay duration is the length of
consecutively being at a state. For example, in the Markov
chain HHHO1O1O1O2O2, the person first stayed at home for
3 time steps. Then moved to other location O1 and stayed
there for 3 time steps. Then moved to other location O2 and
stayed there for 2 time slots. In random processes, the length
of consecutively being at a state is called run length. For the
study of consecutive runs of length exactly k (i.e, the stay
time is k time slot), we define another finite Markov chain Yt
with state space

Ω = {(x, i) : x = 0, 1, ...l; i = −2,−1, 0, ..., k − 1} − {(0,−2)}
[S21]

A state pair is Yt = (x, i). T is the total number of time
slots; l =

∣∣T+1
k+1

∣∣ is the maximum number of the times that run
length k could occur; i means until time step t, in the last k+1
time slots, counting from the end of the chain (which is time
step t), what is the successive run length. x is from time step
1 to time step t, how many exact run length k has occurred.
For example, we want to study run length k = 3, then in a
chain HHOOOHHHOHOO, x = 2 since run length 3 occurs
twice; i = 2 since counting from the last step O, the successive
run length is 2. The state (x,−1) and (x,−2) are used for
managing the fact that a successive run whose length becomes
greater than k does not count. To be more specific:

Overflow state: (x,−1), x = 0, 1, ..., l; which means that in
the last k+1 time slots, counting from the end of the chain the
successive run length is k + 1. So the run length has already
exceeded the target value.

Waiting state: (x,−2), x = 1, ..., l; which means that in
the last k + 1 time slots, counting from the end of the chain
the successive run length is exactly k. So for now this run is
regarded as a valid length k run and counted in x. Whether
this run could be truly counted depends on the value of the next
time step. For example, still for k = 3, the chain OOHHH
is in state (1,−2). If the next value is O, then we get a run
length 3 and the new state is (1, 1). On the other hand, if
the next value is H, then the run is not valid anymore and
the new state is (0,−1). The probability to get j times of run

length k in a chain of T time steps is:

P (Yt = j) = ξ0(
T∏
t=1

Λt)UT (Cj) [S22]

ξ0 is the initial condition. A person always starts at state
(0, 0). Λt is the transition matrix at time step t. UT (Cj) is
the vector of final states we want to get to. For example, if
the total number of steps T = 3 and we want to find the
number of occurrence of run length k = 2, the state space is
(0,−1), (0, 0), (0, 1), (1,−2), (1,−1), (1, 0), (1, 1). There are 7
states in total. The initial condition ξ0 = [0, 1, 0, 0, 0, 0, 0]. If
we want to get the probability that run length 2 occurs 0 times,
UT (Cj) = [1, 1, 1, 0, 0, 0, 0]. If we want to get the probability
that run length 2 occurs 1 time, UT (Cj) = [0, 0, 0, 1, 1, 1, 1].

Since the probability to travel is different when the person
is at "home" or "other" place, these two situations need to be
distinguished, which adds one more dimension to the state.
Thus Yt = {(x, i, o) : x = 0, 1, ...l; i = −2,−1, 0, ..., k − 1; o =
0, 1} − {(0,−2, 0), (0,−2, 1)}. o = 0 means the person is at
home and o = 1 means the person is not at home. Then
according to the Markov state transition diagram,the state
transition probability at time step t can be written as:

P ((x, i+ 1, 0), (x, i, 0)) = 1− P(t), 0 ≤ x ≤ l, 0 ≤ i ≤ k − 2
P ((x, i+ 1, 1), (x, i, 1)) = 1− β1P(t), 0 ≤ x ≤ l, 0 ≤ i ≤ k − 2
P ((x+ 1,−2, 0), (x, k − 1, 0)) = 1− P(t), 0 ≤ x ≤ l − 1
P ((x+ 1,−2, 1), (x, k − 1, 1)) = 1− β1P(t), 0 ≤ x ≤ l − 1
P ((x− 1,−1, 0), (x,−2, 0)) = 1− P(t), 1 ≤ x ≤ l
P ((x− 1,−1, 1), (x,−2, 1)) = 1− β1P(t), 1 ≤ x ≤ l
P ((x,−1, 0), (x,−1, 0)) = 1− P(t), 0 ≤ x ≤ l
P ((x,−1, 1), (x,−1, 1)) = 1− β1P(t), 0 ≤ x ≤ l
P ((x, 0, 1), (x, i, 0)) = P(t), 0 ≤ x ≤ l,−2 ≤ i ≤ k − 1
P ((x, 0, 0), (x, i, 1)) = β1P(t)(1− β2P(t)), 0 ≤ x ≤ l,−2 ≤ i ≤ k − 1
P ((x, 0, 1), (x, i, 1)) = β1P(t)β2P(t), 0 ≤ x ≤ l,−2 ≤ i ≤ k − 1

The above equations define the transition matrix Λt. Then
given the initial state and the target final state, the probability
to get different stay durations (run length) could be calculated.
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