

Supplementary Figure 1. Distribution of mutations in the experimental phylogeny. Leaf and node numbers are provided at each tip and bifurcation point on the tree, respectively. Nonsynonymous mutations are listed to the right of each branch and synonymous mutations to the left. Nonsynonymous mutations also list the amino acid replacement. Each filled circle represents one round of random-mutagenesis PCR and the color of the circle represents the color-class phenotype of the FP protein at that location in the tree.

Supplementary Figure 2. Diversity of phenotypes displayed by the leaf ('modern') sequences of the phylogeny. Purified proteins from sequences 1-19 are arranged by color-class phenotype and are shown in visible light (top image) and 365 nm UV light (bottom image).

Supplementary Figure 3. Evolution of color emission in the experimental phylogeny. Cladogram drawn with bacteria growing on an agar plate expressing either a node or leaf fluorescent protein and visualized under 365 nm ultraviolet light. Topology is a representation of the true topology shown in the phylogram (Supplementary Fig. 1).

TrueLCA PAML all 19 PAML Sub1 PAML Sub2	MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDI MASSEDVIKEFMRFKV <mark>S</mark> MEGSVNGHEFEIEGEGEGRPYEGTQ <mark>S</mark> AKLKVTKGGPLPFAWDI MASSEDVIKEFMRFKV <mark>S</mark> MEGSVNGHEFEIEGEGEGRPYEGTQ MASSEDVIKEFMRFKV <mark>S</mark> MEGSVNGHEFEIEGEGEGRPYEGTQ ****************
TrueLCA PAML all 19 PAML Sub1 PAML Sub2	LSPQFQYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIY LSPQFQYGSKAYVKHPADIPDYMKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGVFIY LSPQFQYGSKAYVKHPADIPDYMKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIY LSPQFQYGSKAYVKHPADIPDYMKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGVFIY ************************************
TrueLCA PAML all 19 PAML Sub1 PAML Sub2	KVKLRGTNFPSDGPVMQKKTMGWEASTERMYPEDGALKGEVKMRLKLKDGDHYDAEVNTT KVKLGTNFPSDGPVMQKKTMGWEASTERMYPEDGALKGEVKMRLKLKDGCHYEAEVKTT KVKLGTNFPSDGPVMQKKTMGWEASTERMYPEDGALKGEVKMRLKLKDGCHYEAEVKTT KVKLGMNFPSDGPVMQKKTMGWEASTERMYPEDGALKGEVKMRLKLKDGSHYDAEVKTT ****.*
TrueLCA PAML all 19 PAML Sub1 PAML Sub2	YMAKKPVQLPGAYKTDVKLDITSHNEDYTIVEQYERAEGRHSTGA YMAKKPVQLPGAYTTDIKLDITSHNEDYTIVEQYERAEGRHSTGA YMAKKPVQLPGAYTTDIKLDITSHNEDYTIVEQYERAEGRHSTGA YMAKKPVQLPGAYTTDIKLDITSHNEDYTIVEQYERAEGRHSTGA

Supplementary Figure 4. The effects of taxon sampling on the inference of the last common ancestral sequence. (a) Full phylogeny from Fig. 1 in the main article. (b) Subsample of sequences across the entire spectrum of the full phylogeny used to infer the last common ancestor (LCA). (c) Subsample of sequences composed of clusters from the full phylogeny used to infer the LCA. Scale bars represents amino acid replacements per site per unit evolutionary time. Color corresponds to Fig.1 from the main article. (d) Multiple sequence alignment of LCAs from the different analyses; true ancestor, PAML inferred using all of the 19 leaf sequences, PAML using sequences from b (Subsample1), PAML using sequences from c (Subsample2). Inferred residues that differ from the true ancestral residues are highlighted in magenta. The sites of the highlighted positions are 17, 43, 94, 117, 125, 127, 171, 174, 178, 194 and 197.

b

Supplementary Figure 5. Absorbance spectra for all 70 proteins characterized in the study.

(a) Absorbance spectra for true ancestors and leaves of phylogeny. Color of spectral line represents color-class of encoded protein. (b) Absorbance spectra for true ancestors (solid lines) and incorrectly inferred ancestors (dotted lines).

Supplementary Table 1. Summary statistics for the experimental phylogeny. (a) Total mutations and types of mutations accumulated in the phylogeny. (b) A list of specific nucleotide substitution types and occurrences in the phylogeny. Abbreviations ts and tv represent transitions and transversions, repectively. (c) Types of nucleotide substitutions resulting in either a synonymous (syn) or nonsynonymous (nonsyn) mutation along each individual branch of the phylogeny. Predicted ratio of nonsynonymous to synonymous mutations does not match the observed ratio because of reversion mutations.

a					
Experimental Phylogeny Mutation Summary					
Total variants in phylogeny	349				
Nodes	17				
Leaves	19				
Total Mutations	833				
Transitions (ts)	535				
Transversions (tv)	298				
Total synonymous (syn) mutations	461				
Synonymous reversions	14				
Observed synonymous mutations	447				
Total nonsynonymous (nonsyn) mutations	372				
Nonsynonymous reversions	19				
Observed nonsynonymous mutations	353				

b

Nucleotide Substitution						
Substitution	Туре	Occurrence	Percentage (%)			
A> T	tv	74	8.88			
A> C	tv	16	1.92			
A> G	ts	117	14.05			
T> A	tv	72	8.64			
T> C	ts	106	12.73			
T> G	tv	19	2.28			
C> T	ts	167	20.05			
C> G	tv	17	2.04			
C> A	tv	33	3.96			
G> C	tv	21	2.52			
G> T	tv	46	5.52			
G> A	ts	145	17.41			

4	r	ъ
1	L	
1	٠	-

Branch number	Syn mutations	Syn reversions	Observed syn mutations	Nonsyn mutations	Nonsyn reversions	Observed nonsyn mutations	Observed nonsyn/syn	Predicted nonsyn/syn
1	21	0	21	12	1	11	0.5714	0.5238
2	24	1	23	13	2	11	0.5417	0.4783
3	16	2	14	17	1	16	1.0625	1.1429
4	25	0	25	9	0	9	0.3600	0.3600
5	19	1	18	13	1	12	0.6842	0.6667
6	21	0	21	11	0	11	0.5238	0.5238
7	16	0	16	14	1	13	0.8750	0.8125
8	21	1	20	12	0	12	0.5714	0.6000
9	23	2	21	16	1	15	0.6957	0.7143
10	18	1	17	14	1	13	0.7778	0.7647
11	19	0	19	13	0	13	0.6842	0.6842
12	17	0	17	13	2	11	0.7647	0.6471
13	15	0	15	14	1	13	0.9333	0.8667
14	19	2	17	17	0	17	0.8947	1.0000
15	23	0	23	13	1	12	0.5652	0.5217
16	16	1	15	16	0	16	1.0000	1.0667
17	22	1	21	11	0	11	0.5000	0.5238
18	21	1	20	17	1	16	0.8095	0.8000
19	19	1	18	14	1	13	0.7368	0.7222
22	7	0	7	20	1	19	2.8571	2.7143
23	4	0	4	4	0	4	1.0000	1.0000
24	7	0	7	8	1	7	1.1429	1.0000
25	4	0	4	10	0	10	2.5000	2.5000
26	1	0	1	1	0	1	1.0000	1.0000
27	4	0	4	1	0	1	0.2500	0.2500
28	4	0	4	5	1	4	1.2500	1.0000
29	1	0	1	4	0	4	4.0000	4.0000
30	8	0	8	7	0	7	0.8750	0.8750
31	8	0	8	9	0	9	1.1250	1.1250
32	2	0	2	2	0	2	1.0000	1.0000
33	8	0	8	9	1	8	1.1250	1.0000
34	4	0	4	9	0	9	2.2500	2.2500
35	2	0	2	2	0	2	1.0000	1.0000
36	5	0	5	4	0	4	0.8000	0.8000
37	17	0	17	18	1	17	1.0588	1.0000
	•	-	•	•	-	Average	1.0510	1.0267

Supplementary Table 2. Percentage of sites correctly inferred for the five tested ASR procedures. Procedures follow the color-code scheme (Fig. 2 in main article).

Method	Correctly Inferred Sites	Incorrectly Inferred Sites	Total Sites
$PAML_{\Gamma}$	98.14%	71	3825
FASTML_Γ	98.17%	70	3825
PAML	98.12%	72	3825
PHYLO_Γ	97.88%	81	3825
MP	98.07%	74	3825

Supplementary Table 3. (a) Phenotypes of true ancestors and incorrectly inferred ancestors. Extinction coefficient (ϵ), quantum yield (Φ), brightness ($\epsilon \ge \Phi$), excitation maxima (λ_{ex}), and emission maxima (λ_{em}). The percent error equals zero when the inferred sequence is identical to the ancestral sequence. (b) Phenotypes for all 19 leaf proteins. (c) Summary of phenotypic error for each ASR procedure. Note, nodes 34 and 35 are not included because they outweigh all other error (but their errors are the same for the five procedures so the overall effect is negligible. Procedures follow the color-code scheme (Supplementary Table 2a, c, Fig. 2).

a										
Node	∑ (M ⁻¹ cm ⁻¹)	Σ Error	4	√ Error	λ _{ex} (nm)	λ _{ex} Error	λ _{em} (nm)	λ _{em} Error	Brightness	Brightness Error
21	19,003	-	0.1213	-	586	-	608	-	2,306	-
PAML Γ	36,317	91.11%	0.2567	111.53%	585	0.17%	604	0.66%	9,322	304.25%
FASTML Γ	36,317	91.11%	0.2567	111.53%	585	0.17%	604	0.66%	9,322	304.25%
PAML	36,317	91.11%	0.2567	111.53%	585	0.17%	604	0.66%	9,322	304.25%
ΡΗΥΙΟ Γ	36,317	91.11%	0.2567	111.53%	585	0.17%	604	0.66%	9,322	304.25%
MP	46,312	143.71%	0.2532	108.62%	585	0.17%	606	0.33%	11,724	408.43%
22	7.307	-	0.0710	-	486	-	549	-	519	-
ΡΑΜΙ Γ	18.524	153.51%	0.0659	7.22%	486	0.00%	546	0.55%	1.221	135.21%
FASTML C	18.524	153.51%	0.0659	7.22%	486	0.00%	546	0.55%	1.221	135.21%
PAMI	19.352	164.84%	0.0768	8.09%	486	0.00%	546	0.55%	1,486	186.26%
PHYLOF	19,352	164 84%	0.0768	8.09%	486	0.00%	546	0.55%	1 486	186 26%
MP	18,276	150.12%	0.0656	7.60%	486	0.00%	546	0.55%	1,199	131.11%
23	16 329		0.0803		486	0.0070	546	0.0070	1 312	-
ΡΔΜΙ Γ	16 443	0 70%	0.0000	4 18%	486	0.00%	546	0.00%	1,312	3 51%
FASTML F	16 443	0.70%	0.0770	4.18%	486	0.00%	546	0.00%	1,200	3 51%
PAMI	20 125	23 25%	0.0809	0.74%	486	0.00%	546	0.00%	1,200	24 16%
	20,125	23.25%	0.0000	0.74%	486	0.00%	546	0.00%	1,628	24.10%
MP	18 353	12 40%	0.0000	3 71%	486	0.00%	546	0.00%	1 419	8.23%
24	24 473	12.4070	0.0713	0.7170	512	0.0070	560	0.0070	1,745	0.2070
	24,473	7 80%	0.0713	16 / 0%	511	0.20%	560	0.00%	2 103	25 60%
	26,404	7 80%	0.0001	16 / 0%	511	0.20%	560	0.00%	2,195	25.09%
	26,404	7.89%	0.0001	16.49%	511	0.20%	560	0.00%	2,103	25.60%
	25,605	1 99%	0.0001	12.87%	512	0.20%	561	0.00%	2,135	18 50%
	25,035	4.3376	0.0000	7 03%	512	0.00%	560	0.10%	1,000	12 /0%
25	17 957	4.1470	0.0703	1.3370	272	0.0078	452	0.0078	1,501	12.4070
	11,007	20 200/	0.0000	10.20%	200	6.07%	452	0.000/	1,550	26.2.40/
	11,010	20.3070	0.1030	10.20%	200	0.97 /0 6 070/	451	0.22/0	1,142	20.34 /0
	24.957	30.30%	0.1030	13.00%	400	0.97%	401	0.22%	2.459	20.34%
	24,007	30.20%	0.0303	12.00%	400	7.2470	451	0.22/0	2,450	58 55%
	11 019	28 20%	0.0909	10.20%	200	6.07%	451	0.22 /0	2,430	26.3.1%
26	25 502	30.3078	0.1030	19.3970	510	0.3770	560	0.2270	1,142	20.3470
	25,592	0.00%	0.0720	0.00%	512	0.00%	560	0.00%	1,042	0.00%
	25,592	0.00%	0.0720	0.00%	512	0.00%	560	0.00%	1,042	0.00%
	22,002	10.00%	0.0720	5.08%	511	0.00%	560	0.00%	1,042	6 30%
	26,150	2 /20/	0.0708	1 64%	512	0.2076	560	0.00%	1,725	1 74%
	25,486	0.41%	0.0700	6.89%	512	0.00%	560	0.00%	1,074	6.45%
27	19,410	0.170	0.0769	0.0070	496	0.0070	500	0.0070	1,301	0.4370
	20 125	0.26%	0.0756	6 700/	400	0.00%	540	0.00%	1,390	16 670/
	20,125	9.20%	0.0609	6 79%	400	0.00%	540	0.00%	1,020	16.67%
	20,125	9.20%	0.0809	6 78%	400	0.00%	546	0.00%	1,020	16.67%
	20,125	9.20%	0.0009	6 79%	400	0.00%	540	0.00%	1,020	16.67%
MP	16,030	8.04%	0.0009	1 75%	486	0.00%	546	0.00%	1 261	9.64%
20	17 200	0.0470	0.0760	1.7570	496	- 0.00 70	540	- 0.00 %	1,201	3.0470
	18 524	7 15%	0.0709	1/ 28%	400	0.00%	545	0 1.8%	1,329	8 15%
	18 524	7 15%	0.0059	14.20%	400	0.00%	546	0.10%	1 221	8 15%
	18 524	7.15%	0.0659	14.20%	486	0.00%	546	0.18%	1 221	8 15%
	15 052	7 72%	0.0053	2 01%	486	0.00%	5/6	0.10%	1 202	9.58%
FILLO_I	15,855	1.12/0	0.0755	2.01/0	400	0.00 /0	540	0.1070	1,202	9.00%

MP	18,276	5.71%	0.0656	14.63%	486	0.00%	546	0.18%	1,199	9.75%
29	18,034	-	0.0803	-	487	-	547	-	1,448	-
PAML_Γ	17,102	5.17%	0.0775	3.54%	487	0.00%	547	0.00%	1,325	8.53%
FASTML_Γ	17,102	5.17%	0.0775	3.54%	487	0.00%	547	0.00%	1,325	8.53%
PAML	17,102	5.17%	0.0775	3.54%	487	0.00%	547	0.00%	1,325	8.53%
PHYLO_Γ	19,237	6.67%	0.0815	1.43%	486	0.21%	547	0.00%	1,567	8.20%
MP	18,034	0.00%	0.0803	0.00%	487	0.00%	547	0.00%	1,448	0.00%
30	26,360	-	0.2398	-	586	-	606	-	6,322	-
ΡΑΜL Γ	32,151	21.97%	0.2486	3.67%	586	0.00%	604	0.33%	7,993	26.44%
FASTML Γ	32,151	21.97%	0.2486	3.67%	586	0.00%	604	0.33%	7,993	26.44%
PAML	32,151	21.97%	0.2486	3.67%	586	0.00%	604	0.33%	7,993	26.44%
PHYLO_Γ	37,090	40.71%	0.2489	3.77%	585	0.17%	605	0.17%	9,231	46.01%
MP	39,835	51.12%	0.2547	6.19%	586	0.00%	605	0.17%	10,145	60.48%
31	36,941	-	0.2528	-	584	-	602	-	9,339	-
PAML Γ	33,535	9.22%	0.2514	0.54%	584	0.00%	604	0.33%	8,431	9.71%
FASTML Γ	33,535	9.22%	0.2514	0.54%	584	0.00%	604	0.33%	8,431	9.71%
PAML	45,841	24.09%	0.2437	3.60%	585	0.17%	605	0.50%	11,171	19.62%
ρηλίο ι	45,841	24.09%	0.2437	3.60%	585	0.17%	605	0.50%	11,171	19.62%
MP	49,196	33.17%	0.2527	0.03%	585	0.17%	605	0.50%	12,433	33.14%
32	38.038	-	0.2527	-	586	-	608	-	9.614	-
PAML Γ	31.981	15.92%	0.2483	1.76%	585	0.17%	604	0.66%	7.941	17.40%
FASTML Г	31,981	15.92%	0.2483	1.76%	585	0.17%	604	0.66%	7,941	17.40%
PAML	31.981	15.92%	0.2483	1.76%	585	0.17%	604	0.66%	7.941	17.40%
ΡΗΥΙΟ Γ	28.842	24.18%	0.2616	3.52%	585	0.17%	605	0.49%	7.546	21.51%
MP	31.981	15.92%	0.2483	1.76%	585	0.17%	604	0.66%	7,941	17.40%
33	30.069	-	0.2572	-	584	-	604	-	7.733	-
ΡΑΜΙ Γ	30.873	2.67%	0.2178	15.31%	583	0.17%	604	0.00%	6.724	13.05%
FASTML T	30.873	2.67%	0.2178	15.31%	583	0.17%	604	0.00%	6.724	13.05%
PAML	30.873	2.67%	0.2178	15.31%	583	0.17%	604	0.00%	6.724	13.05%
ρηλίο ι	30,873	2.67%	0.2178	15.31%	583	0.17%	604	0.00%	6,724	13.05%
MP	30.873	2.67%	0.2178	15.31%	583	0.17%	604	0.00%	6,724	13.05%
34	26,491	-	0.0019	-	402	-	512	-	51	-
PAML Γ	30.213	14.05%	0.2326	11927.88%	584	45.27%	604	17.97%	7.028	13617.80%
FASTML T	30.213	14.05%	0.2326	11927.88%	584	45.27%	604	17.97%	7.028	13617.80%
PAML	30,213	14.05%	0.2326	11927.88%	584	45.27%	604	17.97%	7,028	13617.80%
ρηλίο ι	30,213	14.05%	0.2326	11927.88%	584	45.27%	604	17.97%	7,028	13617.80%
MP	30,213	14.05%	0.2326	11927.88%	584	45.27%	604	17.97%	7,028	13617.80%
35	8.629	-	0.0069	-	585	-	605	-	60	-
PAML Γ	30.213	250.13%	0.2326	3270.90%	584	0.17%	604	0.17%	7.028	11702.63%
FASTML Г	30.213	250.13%	0.2326	3270.90%	584	0.17%	604	0.17%	7.028	11702.63%
PAML	30,213	250.13%	0.2326	3270.90%	584	0.17%	604	0.17%	7,028	11702.63%
ΡΗΥLΟ Γ	31,380	263.66%	0.2481	3496.06%	583	0.34%	603	0.33%	7,787	12977.33%
MP	30,213	250.13%	0.2326	3270.90%	584	0.17%	604	0.17%	7,028	11702.63%
36	24.031	-	0.0010	-	406	-	511	-	23	-
ΡΑΜL Γ	25.263	5.13%	0.0010	1.54%	400	1.48%	511	0.00%	25	6.75%
FASTML Г	27,819	15.76%	0.0011	12.79%	400	1.48%	511	0.00%	30	30.57%
PAML	27,819	15.76%	0.0011	12.79%	400	1.48%	511	0.00%	30	30.57%
ΡΗΥΙΟ Γ	27,819	15.76%	0.0011	12.79%	400	1.48%	511	0.00%	30	30.57%
MP	27,266	13.46%	0.0021	119. <u>23%</u>	400	1.4 <u>8%</u>	511	0.00%	57	148.74%
37	39,333	-	0.2905	-	584	-	604	-	11,425	-
PAML Г	49,835	26.70%	0.2904	0.04%	584	0.00%	603	0.1 <u>7%</u>	14,470	26.65%
FASTML C	49.835	26.70%	0.2904	0.04%	584	0.00%	603	0.17%	14,470	26.65%
PAML	49,835	26.70%	0.2904	0.04%	584	0.00%	603	0.17%	14,470	26.65%
ΡΗΥΙΟ Γ	49,835	26.70%	0.2904	0.04%	584	0.00%	603	0.17%	14,470	26.65%
MP	49,83 <u>5</u>	26.70 <u>%</u>	0.2904	0.04%	584	0.00%	603	0.17%	14,470	26.65%

b					
Leaf	ε(M⁻¹cm⁻¹)	Φ	$\lambda_{ex}(nm)$	$\lambda_{em}(nm)$	Brightness
1	43,663	0.2819	585	604	12,309
2	50,293	0.2837	584	602	14,270
3	26,750	0.0036	398	511	96
4	26,759	0.0052	425	513	140
5	61,727	0.2717	584	605	16,773
6	38,793	0.2541	584	605	9,858
7	30,084	8000.0	497	511	24
8	19,474	0.0747	580	604	1,455
9	8,572	0.2321	589	609	1,990
10	46,478	0.2412	584	603	11,208
11	27,193	0.0544	509	557	1,480
12	17,339	0.1335	486	532	2,314
13	11,352	0.0716	486	548	813
14	17,366	0.0951	486	543	1,651
15	13,477	0.0939	486	533	1,265
16	23,978	0.0061	510	565	145
17	25,406	0.1648	512	556	4,186
18	29,356	0.1348	398	451	3,956
19	10,572	0.1038	399	450	1,097

С

Method	د Average Error	Φ Average Error	Brightness Average Error
$PAML_{\Gamma}$	26.31%	13.75%	41.89%
$FASTML_{\Gamma}$	27.02%	14.50%	43.48%
PAML	31.06%	14.51%	51.49%
ΡΗΥLΟ_Γ	32.31%	13.20%	52.36%
MP	33.73%	20.87%	60.79%

Nodes 34 and 35 not included due to being outliers

Supplementary Note 1

Amino acid sequences for the 37 proteins at the leaves and nodes in the experimental phylogeny.

>01

MASSEDVIKEFMRFRVSMEGSINGHEFEIEGEGEGRPYEGTQTAKLRVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYLKLSFPKGFKWERVMNFEDGGVVTVTQDSTLQDGVLIYKVKLHGINFP SDGPVMQKKTRGWEASTERMYPEDGVLKGEIKMRLKLKDGSHYEAVVKTSYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAVGRHSTGA

>02

MASSEDVIKEFMRFKVSMEGSVNGHEFEIEGDGEGRPYEGTQSAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSTLRDGILIYKVKLHGTNFP SDGPVMQKKTRGWEASTERMYPEDGVLKGEIKMRLKLINGSHYKAEVKTTYIAKKPVQLPGAYKT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>03

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGLPYEGTQVAKLRVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFRWDRIMNFEDGGVVTVIQDTSLRDGEFICKVKLRGTDFP SEGPVMQKQTMGWEASTERMYPDGGMLRGEDNMRLRLKDGGHYYAYVRTTYMAKKPVQLPDAYTI DIKLDVTSHNEDYTIVEQYERAEGRHSTGA

>04

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGRPYEGTQVAKLRVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMKFEDGGVVTVTQDTSLQNGEFICKVKLRGTGFP SEGPVMQKQTMGWEASTERMYPEDGALKGEDTMCLRLKDGGHYDAYIKTTYMAKKPVQLPGAYIV DIKLDVTSHNEDYTIVEQYERAEGRHSTGA

>05

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGRPYEGTQVAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFRWERVMKFEDGGVVTVTQDTSLQDGEFIYKVKLHGTDFP SEGPVVQKQTMGWEASTERMYPEDGALKGEIKMRLRLKGGGQYEADVKTTYMAKKPVQLPGAYIT DIKLDITYHNEDYTIVEQYERAEGRHSTGA

>06

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGVGEGRPYEGTQVAKLKVTKGGPLPFSWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDDGVVIVSQDTSLQNGEFIYKVKLRGIDFP SEGPVMQKQTMGWEASAERMYPEDGALKGEVKMRLRLKDGGHYEADVKTTYMAKKPVLLPGAYIT DIKLDIISHNEDYTIVEQYERAEGRHSTGA

>07

MASSEDVIKEFMRFKVYMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGCPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGLKWDRVMKFEDGGIVTVTQDSSLQDGVFIHKVKVRGTDFP SDGPVMRKQTMGWEASIDRMYPEDGLLKGEAKMRLKLKNGGHYDAEVKTTYMAKKQVQLPGAYII DIKLDTTSHNDDYTIVEQYERAEGRHSTGA

>08

MASSEDVIKEFMRFKVYMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPSDIPDYMKLSFPEGFKWGRVMKFEDGGVVTVTQDSSLQDGVFIYKVKLHGMNFP SDGPVMQKQTMGWEASIERMYPEDGSLKGEAKMRLKLKNGGNYDAEVKTTYMAKKSVQLPGAYII DTKLDITSHNEDYTNVEQYERAEGRHSTGA

MASSEDVIKEFMRFKVCMKGSVNGHVFEIEGEGEGRPYEGTQSVKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPANIPDYVKLSFPEGLKWVRIMNFEDGGVVTVTHDSSLQDGEFIYKVRLVGIDFP SDGPVMQKRTMGWEASTERMYPEDGALKGSVKMRLKLKDGGHYNAEVNTTYMAKKPVQLPGAYIT DIKLDITSHNDDYTVVEQYERAEGRHSTGA

>10

MASSEDVIKEFMRFKVSMEGSVNGHEFEIEGVGEGRPYEGTQSAKLKVTKGGPLPFAWDILSPQF QYGSKVYVKHPADIPDYLKLSFPEGFKWIRIMNFEDGGVVTVTQDSSLQDGVFIYKVKLHGIDFP SDGPVMQKQTMGWEASTERMYPEDGALQGAVKMRLKLKDGGRYGAEVKTTYMAKKHVQLPGAYLT DIKLDITSHNDDYTIVEQYERAEGRHSTGA

>11

MASSEDVIKDFMRFRVRMEGSVNGHEFEIEGEGEGHPYEGTQSAKLKVTKGGPLPFAWDILSPQF MWGSKAYVKHPVDIPDYMKLSFPEGFKWERVMNFEDGGVVIVTQDSSLQDGEFVYEVRLCGTNFP SDGPVMQKKTMGCAAFSERIYSEDGALKGEVKMRLRLKDGDHYEAEVNTTYKAKKAVQLPDAYII YGKLDIISHNEDYTIVEQYERAEGRHSTGA

>12

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGAGRPYEGTQAAKLKVIKGGPLPFAWDILSPQL MWGSKAYVKHPADIPDYMKLSFPEGFKWERVMIFEDGGVLTVTQDSSLQDGEFIYKVRLCGTNFP SDGPVMQKRTMGCAAISERTYPEDGALKGEVKMRLRLKDGGHYEAEVKTTYMAKKTVQLPDAYII DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>13

MASSEDVIKEFMRFKVRMVGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFRWERVMIFEDGGVVTVTQDSSLLDGEFIYEVKLCGTNFP SDGPVMQKKTMGCAAISERIYPKDGALKGEVVMRLRLKDGDHYVAEVKTTYTAKQAVPLPDAYII DGKLDIISYNEDYTIVEQYERAEGRHSTGA

>14

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWDRVMIFEDGGVVTVTQDSSLQDGVLIYKVKVRGTNFP SDGPVMQKKTMGCAAISERVYPEDGALKGRVKMRLRLKGDDYYDAEVSTTYMAKKLVQLPDAYNI DGKLDIISHNKDYTIVEQYERAEARHSTGV

>15

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVIVTHDSSLQDGVFIYKVKLCGTNFP SVGPVMQKRTMGCAAISERIYPEDGALKGEVKMRLRLKDGGHYGAEVNTTYMAKKTVQLPGAYEI DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>16

MASSEDVIKEFMRYKVRMVGSVNGHEFEIKGEGEGRPYEGTQTAILKVTKGGPLPFSWDILSPQF MWGSKAYVKHSADIPDYMKLSFPEGFKWYRVMNFEDGGVITVTHDSSLHDGEFINEVKLRGTNFP SDGPVMQKKTKGCAAFSEHIYPEDGALKGDVIMRLRLEDGDHYVAEVSTAYIAKKRVQLPDAYKI DGKLDIISHNEDYTIVEQYERAEGRHSIGA

>17

MASSEDVIKEFMRYKVRMEGSVNGHEFEIEGEGKGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWYRVMNFEDGGVVTVTQDSSLQDGKFIYEVKLRGINFP SDGPVMQKKTMGCAAFSELTYPEDGALKGDVIMRLRLKDGRHYNAEVSTTYMAKKSVQLPDAYII DGKLDIISHNEDYTIVEQYERAEGRHFTGA

MASSEDVIKEFMRYKVRMEGSVNGHEFEIEGVGEGRPYEGTQTAKLSVTKGGPLPFSWDILSPQF MWGSKTYVKHPPDIPDYMKQSFPEGFRWYRVMNFEDGGVITVTQDSSLQDGKFTYEVKLHGTNFP SHGPVMQKKTNGYAAFSERIYPVDGALKGDVIMRLRLKDGNHYDAQVSTIYMAKKTVQLPDEYKI NGKLDITSHNEDYTIVEQYERAEGRHSTGA

>19

MASSEDVIKEFMRYKVRMEGSINGHEFEIEGVGEGRPYEGTQTAKLRVTRGGPLPFSWDILSPQF MWGSKTYVKHPSDIPDYMKLSFPEGFRWYRVMNFEDGGVITVTQDSSLKDGEFIYEVKLHGTNFP SYGPVMQKKTIGYAAFSERMYPVDGALKGDVIMRLRLKDGSHYDAEVRTTYMAKKTVQLPEEYKI DGKLDITSHNEDYTIVEQYERAEGRHSTGA

>21

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFP SDGPVMQKKTMGWEASTERMYPEDGALKGEVKMRLKLKDGDHYDAEVNTTYMAKKPVQLPGAYKT DVKLDITSHNEDYTIVEQYERAEGRHSTGA

>22

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIYEVKLRGTNFP SDGPVMQKKTMGCAAISERIYSEDGALKGEVKMRLRLKDGDHYDAEVNTTYMAKKTVQLPDAYKI DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>23

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIYEVKLRGTNFP SDGPVMQKKTMGCAAISERIYPEDGALKGEVKMRLRLKDGDHYDAEVSTTYMAKKTVQLPDAYKI DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>24

MASSEDVIKEFMRYKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWYRVMNFEDGGVVTVTQDSSLQDGEFIYEVKLRGTNFP SDGPVMQKKTMGCAAFSERIYPEDGALKGDVIMRLRLKDGDHYDAEVSTTYMAKKTVQLPDAYKI DGKLDITSHNEDYTIVEQYERAEGRHSTGA

>25

MASSEDVIKEFMRYKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLRVTKGGPLPFSWDILSPQF MWGSKTYVKHPADIPDYMKLSFPEGFRWYRVMNFEDGGVITVTQDSSLQDGKFIYEVKLRGTNFP SYGPVMQKKTIGYAAFSERMYPEDGALKGDVIMRLRLKDGDHYDAEVSTTYMAKKTVQLPDEYKI DGKLDITSHNEDYTIVEQYERAEGRHSTGA

>26

MASSEDVIKEFMRYKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWYRVMNFEDGGVVTVTQDSSLQDGEFIYEVKLRGTNFP SDGPVMQKKTMGCAAFSERIYPEDGALKGDVIMRLRLKDGDHYDAEVSTTYMAKKTVQLPDAYKI DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>27

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFSWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGVFIYEVKLRGTNFP SDGPVMQKKTMGCAAISERIYPEDGALKGEVKMRLRLKDGDHYDAEVSTTYMAKKTVQLPDAYKI DGKLDIISHNEDYTIVEQYERAEGRHSTGA

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYEVKLCGTNFP SDGPVMQKKTMGCAAISERIYSEDGALKGEVKMRLRLKDGDHYDAEVNTTYMAKKTVQLPDAYII DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>29

MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF MWGSKAYVKHPADIPDYMKLSFPEGFKWERVMIFEDGGVVTVTQDSSLQDGEFIYEVKLCGTNFP SDGPVMQKKTMGCAAISERIYPEDGALKGEVKMRLRLKDGDHYEAEVKTTYMAKKTVQLPDAYII DGKLDIISHNEDYTIVEQYERAEGRHSTGA

>30

MASSEDVIKEFMRFKVCMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTDFP SDGPVMQKQTMGWEASTERMYPEDGALKGGVKMRLKLKDGGHYDAEVNTTYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>31

MASSEDVIKEFMRFKVCMEGSVNGHEFEIEGEGEGRPYEGTQSAKLKVTKGGPLPFAWDILSPQF QYGSKVYVKHPADIPDYVKLSFPEGFKWVRIMNFEDGGVVTVTQDSSLQDGEFIYKVKLHGIDFP SDGPVMQKQTMGWEASTERMYPEDGALKGAVKMRLKLKDGGHYDAEVNTTYMAKKPVQLPGAYIT DIKLDITSHNDDYTIVEQYERAEGRHSTGA

>32

MASSEDVIKEFMRFKVCMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTDFP SDGPVMQKQTMGWEASTERMYPEDGALKGEVKMRLKLKDGGHYDAEVKTTYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>33

MASSEDVIKEFMRFKVCMEGSVNGHEFEIEGEGEGRPYEGTQAAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMKFEDGGVVTVTQDSSLQDGVFIYKVKLRGTDFP SDGPVMQKQTMGWEASIERMYPEDGLLKGEAKMRLKLKNGGHYDAEVKTTYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>34

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGRPYEGTQVAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDTSLQDGEFICKVKLRGTDFP SEGPVMQKQTMGWEASTERMYPEDGALKGEDKMRLRLKDGGHYDADVKTTYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>35

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGRPYEGTQVAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDTSLQDGEFIYKVKLRGTDFP SEGPVMQKQTMGWEASTERMYPEDGALKGEDKMRLRLKDGGHYEADVKTTYMAKKPVQLPGAYIT DIKLDITSHNEDYTIVEQYERAEGRHSTGA

>36

MASSEDVIKEFMRFKVYLEGSVNGHEFEIEGEGEGRPYEGTQVAKLRVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYMKLSFPEGFKWDRVMNFEDGGVVTVTQDTSLQDGEFICKVKLRGTDFP SEGPVMQKQTMGWEASTERMYPEDGVLKGEDKMRLRLKDGGHYDAYVKTTYMAKKPVQLPGAYIT DIKLDVTSHNEDYTIVEQYERAEGRHSTGA

MASSEDVIKEFMRFKVSMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQF QYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSTLQDGVLIYKVKLRGTNFP SDGPVMQKKTRGWEASTERMYPEDGVLKGEIKMRLKLKDGSHYEAEVKTTYMAKKPVQLPGAYKT DIKLDITSHNEDYTIVEQYERAEGRHSTGA