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MODELING METHODS

Occurrences of Zika virus - Records of the occurrence of Zika virus (ZIKV) were compiled from ProMED-
mail (http://www.promedmail.org) and HealthMap (http://www.healthmap.org), and the Brazilian Ministry of Health 
(http://portalsaude.saude.gov.br/images/pdf/2015/novembro/30/Microcefalia-2-boletim.pdf). Records were filtered 
to remove duplicate coordinates, and inspected to remove any cases that had been corrected or retracted. The data set 
for model calibration includes records from Mexico, Central America, and South America, as only these regions had 
data sufficiently dense for rigorous model calibration. We randomly divided these records into two equal sets: one to 
be used for model calibration and the other for model evaluation.

Model covariates - Several suites of environmental variables were used as independent variables in our models 
to characterise environmental variation across the calibration area and globally. These variables were considered as 
potential drivers of both direct and indirect effects on emergence of mosquito-borne diseases (Peterson 2014). These 
variables include daytime and nighttime land surface temperature and enhanced vegetation index (EVI) values for 
January 2012-July 2015 derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery 
(source: http://reverb.echo.nasa.gov/reverb/#utf8=%E2%9C%93&spatial_map=satellite&spatial_type=rectangle). 
EVI approximates photosynthetic mass (termed colloquially ‘greenness’), and offers a proxy measure of soil mois-
ture, an important factor in determining larval mosquito habitats (Estallo et al. 2008, Nihei et al. 2014).

Precipitation, aridity and water stress are also important potential factors in the distribution of ZIKV, in light 
of their major roles in determining mosquito breeding sites. Effects of precipitation, aridity and soil water stress 
on breeding habitats for ZIKV vector species (Aedes spp.) have been previously examined (Kalra et al. 1997, Alto 
& Juliano 2001, Wu et al. 2009, Mogi et al. 2015). An important result is that drought drives human need for water 
storage in containers, leading to elevated mosquito populations and increased biting rates (Kalra et al. 1997); indeed, 
Brazil has faced recent drought, which increased water storage (Sena et al. 2014). To account for these factors, we 
used data for (1) maximum and minimum monthly precipitation data from WorldClim (http://www.worldclim.org) 
and (2) aridity and soil water stress data layers from the Consortium for Spatial Information (CGIAR-CSI; http://
www.cgiar-csi.org/data/global-aridity-and-pet-database), respectively. For soil water stress, we calculated composite 
indices as maxima and minima across all of the monthly estimates.

Land cover has been identified as key in breeding habitats of Aedes spp., the likely prime vectors of ZIKV (Van-
wambeke et al. 2007). We thus used a global land cover layer available from WorldGrids (http://worldgrids.org/doku.
php?id=wiki:layers#land_cover_and_land_use). We accounted for elevational gradients identified as influential fac-
tors in disease dynamics and mosquito abundance by means of a layer summarising elevation available from the 
Shuttle Radar Topography Mission (SRTM; http://srtm.usgs.gov/) (Lozano-Fuentes et al. 2012, Dhimal et al. 2015).

Disease transmission and spread dynamics, however, are not dependent solely on environmental factors; other 
sets of variables also play major roles (Koyadun et al. 2012, Teurlai et al. 2015). Hence, we used grids of human 
population density, nighttime lights, and accessibility via transportation. Population density grids were drawn from 
the Gridded Population of the World, version 4 (GPWv4), collection released recently via http://beta.sedac.ciesin.
columbia.edu/data/collection/gpw-v4. Nighttime satellite imagery (year 2013) was used as a proxy for real poverty 
(Noor et al. 2008, Wang et al. 2012), and was obtained from NOAA-Defense Meteorological Satellite Program (http://
ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). Accessibility was summarised in terms of travel time by 
land or sea (Nelson 2008), as the connectivity between population sites is an important variable in potential distribu-
tions of emerging diseases (Cliff & Haggett 2004); this layer was developed by the European Commission and World 
Bank (http://forobs.jrc.ec.europa.eu/products/gam/download.php). Finally, we used two grids representing the envi-
ronmental suitability for Ae. aegypti and Ae. albopictus as potential vectors for ZIKV derived from a recent detailed 
analysis (Kraemer et al. 2015), available from: http://goo.gl/Zl2P7J; and developed parallel models based on another 
recent analysis of the same two species (Campbell et al. 2015). These mosquito variables have been summarised in 
raster format at a spatial resolution of 5 km, the same resolution used in our study, and have been used in a previous 
study of similar purposes (Nsoesie et al. 2016). All grids were resampled to a spatial resolution of 5 x 5 km in ArcMap 
10.3, in light of the global distribution of the species.

Ecological niche modeling - We approximated the ZIKV fundamental ecological niche via ecological niche mod-
eling (ENM) via the maximum entropy algorithm implemented in Maxent, version 3.3 (Phillips et al. 2006). Pe-
terson et al. (2011) defined the fundamental niche as “the set of environmental conditions required for the species 
to maintain populations without immigrational subsidy”. ENM relates known occurrences of species to the set of 
environmental variables in a maximum entropy, evolutionary-computing environment to approximate this set of 
environmental conditions associated with maintenance of populations (Peterson et al. 2011).

We calibrated ENMs across Mexico, Central America and South America, where ZIKV occurrence data were suffi-
ciently dense for rigorous model calibration (Owens et al. 2013); models were then projected worldwide for interpretation. 
To explore and understand contributions of different suites of variables to shaping the distribution of ZIKV, we used differ-
ent combinations of environmental variables; socioeconomic variables and accessibility (see Neerinckx et al. 2008). These 
explorations illuminate the roles of possible drivers of ZIKV transmission beyond just climate (Kilpatrick & Randolph 
2012, Weaver 2013). A full elaboration of combinations of drivers that we explored is presented in Supplementary Table.
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For each combination, we ran Maxent using 100 bootstrap replicates. The median of the outputs of the replicates 
was used as a best final estimate in subsequent analyses. Final models were thresholded based on a maximum al-
lowable omission error rate of 5% [E = 5%; (Peterson et al. 2008)], in effect assuming that < 5% of occurrence data 
would have sufficient error in geolocation that variable values might be misrepresented.

Model predictions were evaluated for statistical significance based on predictions among random subsets of 50% 
of available data. In effect, these tests assess whether a model based on a certain amount of occurrence information 
across a region will be able to anticipate the next set of occurrences across that same landscape; while not an ideal test 
of predictive ability when models are transferred to other regions, it is at present the only test available to us. We used 
partial receiver operating characteristic (ROC) statistics (Peterson et al. 2008), which avoid well-known problems 
with traditional ROC approaches (Lobo et al. 2008). Partial ROC statistics were calculated using the PartialROC 
function in the ENMGadgets package in R software version 3.2.0 (R Development Core Team 2015), specifying the 
same E = 5%, a 50% bootstrap resampling, and 100 random iterations (Lobo et al. 2008).

For visualisation, we combined two of these thresholded models (Model 3 and Model 4) to illustrate differences 
between predictions based on different possible drivers of ZIKV transmission. Interesting contrasts emerge from 
differences in suitability based on all of the environmental dimensions, areas identified as suitable based on climate 
and presence of vector species, and suitability in terms of human socioeconomic variables and accessibility, as is 
exemplified in the Figure in the main paper. GIS-readable grids (GeoTIFF format) and Google Earth keyhole markup 
language (KML) files are available via Figshare (https://figshare.com/s/0257ff447ccc11373e41).

SUPPLEMENTARY TABLE
Combinations of environmental variables used to calibrate the ecological niche models for ZIKV in this study

Variable Model 1 Model 2 Model 3 Model 4

Population density 2015 X √ X √
Daytime temperature √ √ √ √
Nighttime temperature √ √ √ √
Maximum monthly precipitation √ √ √ √
Minimum monthly precipitation √ √ √ √
Enhanced vegetation index √ √ √ √
Maximum soil water stress √ √ √ √
Minimum soil water stress √ √ √ √
Aridity √ √ √ √
Elevation √ √ √ √
Land-cover X √ X √
Aedes aegypti abundance X X √ √
Aedes albopictus abundance X X √ √
Nighttime lights X √ X √
Accessibility X √ X √

Check marks indicate that the variable was used in the model; X’s: indicate variables that were not used in the model.



3Mem Inst Oswaldo Cruz, Rio de Janeiro, 2016

Supplementary data

Supplementary figure 1: ZIKV occurrence records (dotted circles) used in model calibration across Mexico, Central America, and South America.

Supplementary figure 2: potential geographic distribution of ZIKV (in blue) based on analysis of only environmental variables (Model 1), based 
on a threshold that admits a maximum of 5% omission error.
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Supplementary figure 3: potential geographic distribution of ZIKV (in blue) based on analysis of all environmental, socioeconomic, poverty 
proxy and accessibility variables (Model 2), based on a threshold that admits a maximum of 5% omission error.

Supplementary figure 4: potential geographic distribution of ZIKV (in blue) based on analysis of environmental variables and mosquito density 
(Model 3), based on a threshold that admits a maximum of 5% omission error.
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Supplementary figure 5: potential geographic distribution of ZIKV (in blue) based on analysis of all environmental, socioeconomic, mosquito-
related, poverty-related and accessibility variables (Model 4), based on a threshold that admits a maximum of 5% omission error.

Supplementary figure 6: potential geographic distribution of ZIKV based on environmental variables only (Model 1) in relation to known global dis-
tribution of the virus. Note that models were calibrated based on occurrences in Mexico, Central America, and South America, such that occurrences 
in Africa, Asia, and the Pacific had no contribution to model calibration. Countries reported with autochthonous cases confirmed by isolation or PCR 
(orange shading with brown boundaries) and countries with known seropositive cases (red stippled areas and light-blue shading) are shown in relation 
to the model predictions (in blue, and purple and light blue where overlapped by the known-positive cases. Note the generally close correspondence 
between the global projection of our models and countries where ZIKV has been detected via virus isolation, PCR, or serological studies.
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Supplementary figure 7: close-up of North America to provide detail additional to the figure in the main paper. Orange areas were identified 
as suitable based on drivers related to physical environment and vector populations; purple areas were identified as suitable based on drivers 
related to human conditions and accessibility; blue areas were identified as suitable in terms of all drivers considered.

Supplementary figure 8: close-up of Europe to provide detail additional to the figure in the main paper. Orange areas were identified as suitable 
based on drivers related to physical environment and vector populations; purple areas were identified as suitable based on drivers related to 
human conditions and accessibility; blue areas were identified as suitable in terms of all drivers considered.
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Supplementary figure 9: close-up of Asia and Australia to provide detail additional to the figure in the main paper. Orange areas were identified 
as suitable based on drivers related to physical environment and vector populations; purple areas were identified as suitable based on drivers 
related to human conditions and accessibility; blue areas were identified as suitable in terms of all drivers considered.

Supplementary figure 10: close-up of South America to provide detail additional to the figure in the main paper. Orange areas were identified 
as suitable based on drivers related to physical environment and vector populations; purple areas were identified as suitable based on drivers 
related to human conditions and accessibility; blue areas were identified as suitable in terms of all drivers considered.
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