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Tables 
 
In this work, 183 quantitative image features are extracted, some in 2D, some in 2.5D and 

some in 3D.  2D features are computed on the image where the unidimensional 

measurement of the tumor is calculated. A 2.5D feature is defined as the average of the 

features computed on all single images containing the tumor. As to the numbers of 

neighboring pixels (2D) / voxels (3D), 8 connected pixels are considered for 2D analysis, 

whereas 26 connected voxels are considered for 3D analysis. 8 and 13 directions are used 

for 2D and 3D analysis, respectively.  

 
Feature Definitions 

 
No. Feature / 

Dimension 
Description 

1 Uni / 1D Maximal diameter of tumor. Calculated by multiplying 
the longest line inside the tumor on an axial plane by the 
image resolution in x or y direction.   

2 Volume / 3D Volume of tumor. Calculated by multiplying the number 
of tumor voxels by the image resolutions in x-, y- and z-
directions. 

3-12 First Order 
Statistics / 2D  and 
3D 
 

Features in this group are derived from the intensity 
histogram of tumor. The following 5 well-known first 
order statistics are calculated in both 3D and 2D, totaling 
10 features in this group.  
• Mean: average intensity of tumor 
• SD: standard deviation of tumor intensities 
• Skewness: a measure of intensity symmetry 
• Kurtosis: a measure of flatness of tumor intensity 

relative to a normal distribution 
• Peak Position: the peak position of the histogram 

13-21 Shape / 2D and 3D 
 

This group of features describes the shape properties of 
the tumor.  
In 2D, the following three shape features are extracted: 
• Roundness Factor (RF): a measure of circularity of a 

tumor’s profile on the 2D image. It is defined as,  

𝑅𝐹 =  
4𝜋 ∙ 𝐴𝑟𝑒𝑎

 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 ! 
where Area denote the area of tumor and Perimeter 
the length of tumor contour on the 2D image. 

• Eccentricity: a measure specifying how close an 
ellipse (i.e., a tumor’s profile on the 2D image) is to a 
circle. It is defined as: 



Eccentricity = c / a 
where, c is the distance from the center to a focus 
and a is the distance from that focus to a vertex. 

• Solidity: a measure of convexity of a tumor’s profile 
on the 2D image. It is defined as, 

𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝐴𝑟𝑒𝑎

𝐶𝑜𝑛𝑣𝑒𝑥𝐴𝑟𝑒𝑎 
where Area denote the tumor’s area and ConvexArea 
the area of the convex hull bounding the tumor on  
the 2D image.  

In 3D, the following 6 shape features are extracted: 
• Compactness Factor (CF): a measure of sphericity of 

tumor in 3D.  It is defined as, 

𝐶𝐹 =
𝑉

𝜋𝑆
!
!
 

where, V denotes tumor volume and S tumor 
surface.  

• Ratio of minor to major axes: the ratio of tumor 
shortest diameter to its longest diameter in 3D 

• Ratio of minor to middle axis: the ratio of tumor 
shortest diameter to its perpendicular, second longest 
diameter perpendicular to  in 3D 

• Ratio of tumor volume to its surrounding box 
volume: a measure to quantify tumor’s convexity in 
3D. The surrounding box is defined as the smallest 
sphere encompassing the tumor   

• Mean of radii: the mean of the lengths of the line 
segments from the center of tumor to any voxel on 
the surface of tumor 

• Standard Deviation of radii: the standard deviation of 
the lengths of the line segments from the center of 
tumor to any voxel on the surface of tumor 

22-29 Surface Shape / 
3D  
 

Shape index is used to intuitively characterize the local 
shapes of tumor surface [1]. The shape indexes, SI(1) – 
SI(9), are numbers between [-1, 1] and respectively imply 
the amount of the following 9 shapes on tumor surface:  
• SI(1) ∈ [−1,− !

!
): spherical cup 

• SI(2) ∈ [− !
!
,− !

!
): trough 

• SI(3) ∈ [− !
!
,− !

!
): rut 

• SI(4) ∈ [− !
!
,− !

!
): saddle rut 

• SI(5) ∈ [− !
!
, !
!
): saddle 

• SI(6) ∈ [!
!
, !
!
): saddle ridge 



• SI(7) ∈ [!
!
, !
!
): ridge 

• SI(8) ∈ [!
!
, !
!
): dome 

• SI(9) ∈ [!
!
, 1]: spherical cap 

Since the sum of the 9 scaled shape indexes equals to 1, 
SI(1) is excluded from the analysis to reduce the 
redundancy. This group has 8 features. 

30-35 Sigmoid Function / 
3D 
 

To quantify tumor margins, Sigmoid Function is used to 
fit density change along a sampling line drawn 
orthogonal to the tumor surface [2]. Each sampling line, 
going through one voxel on the tumor surface, has a 
certain length (5mm in this work) inside and outside the 
tumor. The Sigmoid Function is defined as, 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 =  
𝐴

𝑒!∙! + 1+ 𝐶 
where the fitting parameter A, B and C respectively 
specify the amplitude, slope and offset of the curve. The 
6 Sigmoid Function features in this group are as follows: 
• Sigmoid_Amplitude_Mean: average of the amplitude 

values (A) of all sampling lines 
• Sigmoid_Amplitude_SD: Standard deviation of the 

amplitude values (A) of all sampling lines 
• Sigmoid_Slope_Mean: average of the slope values 

(B) of all sampling lines 
• Sigmoid_Slope_SD: Standard deviation of the slope 

values (B) of all sampling lines 
• Sigmoid_Offset_Mean: average of the offset values 

(C) of all sampling lines 
• Sigmoid_Offset_SD: Standard deviation of the offset 

values (C) of all sampling lines 
36-53 Wavelets / 2.5D  

 
 
 

In this study, two types of Wavelets transform are 
implemented. One is discrete wavelet transform 
(DWT)[3] and the other is discrete stationary wavelet 
transform (SWT) [4]. For each transform, Wavelets 
images/features are calculated at three decomposition 
levels, resulting in 18 features in this group. 
DWT:  Taking a M x N image I(m, n) as an example, the 
first level DWT decomposition can be briefly described 
as the following. First, a low-pass and a high-pass filter 
(‘Coiflets1’ wavelet filter) are applied to the original 
image vertically followed with a vertical down-sampling 
by a factor of 2. Then the two filters are applied to the 
processed image horizontally followed by a horizontal 
down-sampling by a factor of 2. This results in 4 sub-
images that are known as the low-pass approximation 
L(m, n) (average image), vertical detail V(m,n), 



horizontal detail H(m, n) and diagonal detail D(m, n). The 
second (and (third) level DWT decomposition repeats the 
above procedure but with the average image generated at 
the first (and second) level decomposition. 
 
In this study, 9 wavelet features are defined as the Energy 
of each detailed sub-images.  Let Ni be the number of 
pixels of a sub-image at level i (i=1, 2).  
 
At the first DWT decomposition level,  
 
• DWT-H:  

𝐸𝑛𝑒𝑟𝑔𝑦! =  𝐻(𝑖)!
!

!

 

• DWT-V:  

𝐸𝑛𝑒𝑟𝑔𝑦! =  𝑉(𝑖)!
!

!

 

• DWT-D: 

𝐸𝑛𝑒𝑟𝑔𝑦! =  𝐷(𝑖)!
!

!

 

 
At the second DWT decomposition level, 
• DWT-LH: 

𝐸𝑛𝑒𝑟𝑔𝑦!" =  𝐿𝐻(𝑖)!
!

!

 

• DWT-LV:  

𝐸𝑛𝑒𝑟𝑔𝑦!" =  𝐿𝑉(𝑖)!
!

!

 

• DWT-LD:  

𝐸𝑛𝑒𝑟𝑔𝑦!" =  𝐿𝐷(𝑖)!
!

!

 

 
At the third DWT decomposition level, 
• DWT-LH: 

𝐸𝑛𝑒𝑟𝑔𝑦!!" =  𝐿𝐿𝐻(𝑖)!
!

!

 

• DWT-LV:  

𝐸𝑛𝑒𝑟𝑔𝑦!!" =  𝐿𝐿𝑉(𝑖)!
!

!

 



• DWT-LD:  

𝐸𝑛𝑒𝑟𝑔𝑦!!" =  𝐿𝐿𝐷(𝑖)!
!

!

 

 
SWT: 
To overcome the translation-variance in DWT, SWT 
performs up-sampling on wavelet filters instead of down-
sampling on the image. Thus, at each scale of SWT 
decomposition, the image is convolved by up-sampled 
filter coefficients and remains the original size. There are 
seven corresponding SWT features (detail not included). 

54-62 Edge Frequency / 
2.5D 
 

Edge Frequency features, obtained from images 
processed by an edge operator (in this work, it is a 2D 
Robert's edge operator), characterize variation of the 
intensity gradient inside a tumor [5]. The 2D Robert's 
edge operator is defined as follows: 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑 = 𝑓 𝑖, 𝑗 − 𝑓 𝑖 + 𝑑, 𝑗
+ 𝑓 𝑖, 𝑗 − 𝑓 𝑖 − 𝑑, 𝑗
+ 𝑓 𝑖, 𝑗 − 𝑓(𝑖, 𝑗 + 𝑑)
+ 𝑓 𝑖, 𝑗 − 𝑓(𝑖, 𝑗 − 𝑑)  

where 𝑓(𝑖, 𝑗) denotes a tumor pixel intensity at the 
location (i, j), and 𝑑 is the distance between the pixel 
𝑓(𝑖, 𝑗) and its neighboring pixel. The three features, 
Mean, Coarseness and Contrast, are computed from the 
processed gradient images at the distances of one, four 
and nine pixels, which totals 9 features. Equations to 
define the Coarseness and Contrast are the same as the 
ones defined in the GTDM feature group, with S(i) 
replaced by gradient(d). 

63-64 Fractal Dimension 
/ 2.5D  
 

Fractal Dimension provides a statistical index to 
characterize the complexity of an image [6]. Basically, 
the Fractal Dimension describes the relationship between 
the changes in a measuring scale and the measurement 
results at the scale. In this work, a 3D box-counting 
algorithm [7] is adopted to calculate the Fractal 
Dimension to quantify tumor intensity homogeneity. 
Fractal Dimension Mean and Standard Deviation are 
computed. 

65-79 Gray-Tone 
Difference Matrix  
(GTDM) / 2.5D 
 

Neighborhood GDTM features are defined based on 
gray-tone (i.e., image intensity) difference between a 
pixel and its neighborhood [8]. Let 𝑓(𝑘, 𝑙) be an image 
pixel that has the gray-tone of 𝑖 and is located at (𝑘, 𝑙). 
The average gray-tone over a neighborhood centered at, 
but excluding (𝑘, 𝑙), is 



𝐴! = 𝐴 𝑘, 𝑙

=
1

𝑊 − 1 𝑓 𝑘 +𝑚, 𝑙
!

!!!!

!

!!!!

+ 𝑛  (𝑚,𝑛) ≠ (0,0) 

 
where 𝑊 = (2𝑑 + 1)! is the neighborhood size (area). 
The 𝑖th entry in the GDTM is  

 𝑠 𝑖 = 𝑖 − 𝐴! ,   for 𝑖 ∈ 𝑁!  if 𝑁! ≠ 0,  
         = 0,                  otherwise 
where 𝑁!  is the set of all pixels having the gray-tone of 
𝑖.  For an 𝑁×𝑁 image, let 𝑝! be the probability of 
occurrence of gray-tone value i, 𝐿! be the highest gray-
tone value in the image and 𝑁! be the total number of 
different gray-tone values in the image. The GDTM 
features are defined as, 
• Coarseness:  

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = 𝑝!𝑠 𝑖
!!

!!!

!!

 

 
• Contrast:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡

=
1

𝑁!(𝑁! − 1)
𝑝!𝑝!(𝑖

!!

!!!

!!

!!!

− 𝑗)!
1
𝑛! 𝑠(𝑖)

!!

!!!

 

 
• Busyness: 

𝐵𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
𝑝!𝑠 𝑖

!!
!!!

(𝑖𝑝! − 𝑗𝑝!)
!!
!!!

!!
!!!

,𝑝! ≠ 0,𝑝!

≠ 0 
 
• Complexity: 



𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

=  𝑖 − 𝑗
!!

!!!

!!

!!!
/ 𝑛!(𝑝! + 𝑝!) 𝑝!𝑠 𝑖
+ 𝑝!𝑠(𝑗) ,𝑝! ≠ 0,𝑝! ≠ 0 

 
• Strength: 

𝑆𝑡𝑟𝑒𝑛𝑔ℎ𝑡 =
𝑝! + 𝑝! 𝑖 − 𝑗 !!!

!!!
!!
!!!

𝑠 𝑖!!
!!!

,𝑝!

≠ 0,𝑝! ≠ 0 
 
In this study, 𝑁!  = 256. The distance of the neighboring 
pixels is 1. 

80-99 Gabor / 2.5D 
 

Gabor filters are linear filters designed for detecting 
edges at different directions and width [9]. It is an 
oriented Gaussian function modulated by a sinusoidal 
wave. The Gabor Energy feature is defined as the sum of 
the square of intensity over all tumor pixels on the 
images processed by Gabor filter. In this work, the 
Energy is calculated at 4 wavelengths (w=3, 5, 7 and 9 
pixels) and at each wavelength, there are 4 directions and 
the sum of all directions. This totals up to 20 Gabor 
features. Below are 5 example Gabor features computed 
at 4 directions (dir=0,45, 90 and 135) and the sum of all 
directions, with the wavelength of 3 pixels. 
• Gabor_Energy-dir0-w3: the Energy feature calculated 

on images processed with the Gabor filter built with 
an orientation of 0o and wavelength of 3 pixels 

• Gabor_Energy-dir45-w3: the Energy feature 
calculated on images processed with the Gabor filter 
built with an orientation of 45o and wavelength of 3 
pixels 

• Gabor_Energy-dir90-w3: the Energy feature 
calculated on images processed with the Gabor filter 
built with anorientation of 90o and wavelength of 3 
pixels 

• Gabor_Energy-dir135-w3: the Energy feature 
calculated on images processed with the Gabor filter 
built with an orientation of 135o and wavelength of 3 
pixels 

• Gabor_Energy-sum-w3: the Gabor Energy feature 
calculated on images processed using the Gabor filter 
built with the sum of all of the above 4 orientation at 



the wavelength of 3 pixels  
100-113 
 

Laws Energy / 
2.5D 
 

Laws' Energy emphasizes edge, spot, ripple and wave 
patterns through Laws filters generated by the following 
5 basic raw vectors: Average 𝐿! = 1,4,6,4,1 , Edge 
𝐸! = −1,−2,0,2,1 , Spot 𝑆! = −1,0,2,0,−1 , Ripple 
𝑅! = 1,−4,6,−4,1 , and Wave 𝑊! =
−1,2,0,−2,−1 [10].  By multiplying and combining 

the transpose of one basic vector and/or the vector itself, 
14 standard Laws filters can be built, each generating one 
feature. A Laws Energy feature is computed by summing 
the square of image pixel value over all tumor pixels on 
images processed by one of the 14 Laws filters.  
• Laws_Energy-1: Energy calculated on the images 

processed by Laws filter #1 (𝐸!!×𝐿!+ 𝐿!!×𝐸!) 
• Laws_Energy-2: Energy calculated on the images 

processed by Laws filter #2 (𝑆!!×𝐿!+ 𝐿!!×𝑆!) 
• Laws_Energy-3: Energy calculated on the images 

processed by Laws filter #3 (𝑊!
!×𝐿!+ 𝐿!!×𝑊!) 

• Laws_Energy-4: Energy calculated on the images 
processed by Laws filter #4 (𝑅!!×𝐿!+ 𝐿!!×𝑅!) 

• Laws_Energy-5: Energy calculated on the images 
processed by Laws filter #5 (𝑆!!×𝐸!+ 𝐸!!×𝑆!) 

• Laws_Energy-6: Energy calculated on the images 
processed by Laws filter #6 (𝑊!

!×𝐸!+ 𝐸!!×𝑊!). 
• Laws_Energy-7: Energy calculated on the images 

processed by Laws filter #7 (𝑅!!×𝐸!+ 𝐸!!×𝑅!) 
• Laws_Energy-8: Energy calculated on the images 

processed by Laws filter #8 (𝑊!
!×𝑆!+ 𝑆!!×𝑊!) 

• Laws_Energy-9: Energy calculated on the images 
processed by Laws filter #9 (𝑅!!×𝑆!+ 𝑆!!×𝑅!)  

• Laws_Energy-10: Energy calculated on the images 
processed by Laws filter #10 (𝑅!!×𝑊!+ 𝑊!

!×𝑅!)  
• Laws_Energy-11: Energy calculated on the images 

processed by Laws filter #11 (2 ∗ 𝐸!×𝐸!) 
• Laws_Energy-12: Energy calculated on the images 

processed by Laws filter #12 (2 ∗ 𝑆!×𝑆!) 
• Laws_Energy-13: Energy calculated on the images 

processed by Laws filter #13 (2 ∗𝑊!×𝑊!) 
• Laws_Energy-14: Energy calculated on the images 

processed by Laws filter #14 (2 ∗ 𝑅!×𝑅!)  
114-125 LoG / 2.5D 

 
Laplacian of Gaussian (LoG) is a combined filter, i.e., a 
Gaussian smoothing filter followed by Laplacian, a 
differential operator [11]. The definition of a 2D LoG is:  

 LoG x, y = − !
!"!

1− !!!!!

!!!
e!

!!!!!

!!! ,   



In this study, the following three LoG features of Mean, 
Uniformity and Entropy are calculated from the LoG 
filtered (processed) image, 𝐿𝑜𝐺𝑀𝑎𝑠𝑘(𝑖), at four σ levels 
σ ϵ 0, 0.5, 1.5, 2.5 .  σ = 0 (s1; no smoothing) and 
σ = 2.5 (s4). This totals 12 LoG features in this group. 
 
• LoG Mean Gray Intensity (MGI): 

𝑀𝑒𝑎𝑛 =  𝐿𝑜𝐺𝑀𝑎𝑠𝑘(𝑖)!
!

!

 

• LoG Uniformity: 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = 𝑃(𝑖)!
!

!!!

 

• LoG entropy: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑃(𝑖) log! 𝑃(𝑖)
!

!!!

 

where N is the number of object pixels, P(i) is the 
probability of pixels with a gray-level of 𝑖 in the LoG 
pre-processed image, and 𝐿 is the maximal value of the 
pre-processed image.  

126-130 Run-length  / 3D 
 

The Run-length features are developed to characterize 
tumor heterogeneity by counting the number of 
maximum contiguous pixels / voxels having an identical 
intensity along a line [12]. Let 𝑅 𝑎, 𝑟  be the number of 
primitives of all directions having length of 𝑟 and 
intensity of 𝑎, 𝑉 the volume of tumor, 𝑁! the maximum 
run-length, and 𝐿 = 256 the number of image intensity 
bins. The total number of run-lengths is therefore,  

𝐾 = 𝑅 𝑎, 𝑟
!!

!!!

!

!!!

 

In this work, the following five Run-length features are 
used.  
• Run_SPE: Short primitives emphasis  

𝑆𝑃𝐸 = !
!

! !,!
!!

!!
!!!

!
!!!                       

• Run_LPE: Long primitives emphasis 

𝐿𝑃𝐸 =
1
𝐾 𝑅 𝑎, 𝑟 𝑟!

!!

!!!

!

!!!

 

• Run_GLU: Gray-level uniformity 

𝐺𝐿𝑈 =
1
𝐾 𝑅 𝑎, 𝑟

!!

!!!

!!

!!!

 



• Run_PLU: Primitive length uniformity 

𝑃𝐿𝑈 =
1
𝐾 𝑅 𝑎, 𝑟

!

!!!

!!!

!!!

 

• Run_PP: Primitive percentage 

𝑃𝑃 =
𝐾
𝑉 

131-132 Spatial Correlation 
/ 2.5D 
 

Spatial Correlation features assess linear spatial 
relationships between texture primitives [13]. Let 𝐼 𝑖, 𝑗  
be an image pixel's intensity at the location (x, y) in a 
tumor, 𝑑 the distance between two pixels,  𝑆 the area of 
the tumor, 𝑆! the area of the tumor after shrinking with a 
distance of 𝑑 pixels. Then, 

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = !
!!

! !,! !(!!!,!!!)!!
!,!!!

! !,! !!
!,!!!

 

 
In this study, the spatial correlations are calculated at the 
distances of 𝑑=1 and d=4 pixels. 

133-183 Gray-Level Co-
occurrence Matrix 
(GLCM) /3D 
 

This feature class quantifies textures by creating a new 
matrix, called GLCM, which is based on the frequency of 
image pixel pairs possessing particular intensity values at 
a certain direction and distance [14]. In this work, 
GLCMs are generated at 13 directions and three distances 
(d=1, 4, 9 voxels). At each distance, the final GLCM is 
the average of the 13 GLCMs. For each of the three 
GLCMs, the following 17 standard statistical features are 
derived to characterize tumor’s homogeneity, contrast, 
entropy, etc. 
• Angular Second Moment (ASM): 

𝐴𝑆𝑀 = 𝑃(𝑖, 𝑗) !
!

!!!

!

!!!

 

• Contrast: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑛! 𝑃(𝑖, 𝑗)
!

!!!

!

!!!
!!! !!

!!!

!!!

 

• Correlation (Corr): 

𝐶𝑜𝑟𝑟 =
𝑖𝑗𝑃 𝑖, 𝑗 − 𝜇! 𝑖 𝜇!(𝑗)!

!!!
!
!!!

𝜎!(𝑖)𝜎!(𝑗)
 

• Sum of squares: 



𝑆𝑢𝑚𝑆𝑞𝑢𝑎𝑟𝑒𝑠 = (𝑖 − 𝜇)!𝑃(𝑖, 𝑗)
!

!!!

!

!!!

 

• Homogeneity: 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
𝑃(𝑖, 𝑗)

1+ 𝑖 − 𝑗

!

!!!

!

!!!

 

• Inverse Difference Moment (IDM): 

𝐼𝐷𝑀 =
𝑃 𝑖, 𝑗

1+ 𝑖 − 𝑗 !

!

!!!

!

!!!

 

• Sum average (SA): 

𝑆𝐴 = 𝑖𝑃!!!(𝑖)
!!

!!!

 

• Sum entropy (SE): 

𝑆𝐸 = − 𝑃!!!(𝑖) log! 𝑃!!!(𝑖)
!!

!!!

 

• Sum variance (SV): 

𝑆𝑉 = (𝑖 − 𝑆𝐸)!𝑃!!!(𝑖)
!!

!!!

 

• Entropy: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑃 𝑖, 𝑗 log! 𝑃 𝑖, 𝑗
!

!!!

!

!!!

 

• Different Variance (DV): 

𝐷𝑉 = variance of  𝑃!!! 

• Different Entropy (DE): 

𝐷𝐸 = 𝑃!!!(𝑖) log! 𝑃!!!(𝑖)

!!!!

!!!

 

• Informational measure of correlation 1 (IMC1): 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1
max 𝐻𝑋,𝐻𝑌  



• Informational measure of correlation 2 (IMC2): 

𝐼𝑀𝐶2 = 1− 𝑒!!(!"#!!!"#) 

• Maximum Correlation Coefficient (MCC): 

𝑀𝐶𝐶 = 𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄
!
! 

𝑄 =  
𝑝 𝑖, 𝑘 𝑝(𝑗, 𝑘)
𝑃!(𝑖)𝑃!(𝑘)

!

!!!

 

• Maximal Probability (MP): 

𝑀𝑃 = max 𝑃(𝑖, 𝑗)  

• Cluster Tendency (CT): 

𝐶𝑇 = 𝑖 + 𝑗 − 𝜇! 𝑖 − 𝜇! 𝑗
!𝑃(𝑖, 𝑗)

!

!!!

!

!!!

 

where: 

P(i, j): the probability distribution matrix of co-

occurrence matrix M(i, j;d, θ), 

L: the number of discrete intensity levels in the 

image, 

µ: the mean of P(i, j), 

p! i = P(i, j)!
!!!  is the marginal row 

probabilities, 

p! i = P(i, j)!
!!!  is the marginal column 

probabilities, 

µ!: the mean of p!, 

µ!: the mean of p!, 

σ!: the standard deviation of p!, 

σ!: the standard deviation of p!, 

p!!! k = P i, j!
!!!

!
!!! , i+ j = k, 

k = 2,3,… ,2L, 

p!!! k = P i, j!
!!!

!
!!! , i− j = k, 



k = 0,1,… , L− 1, 

HX = − p!(i) log! p!(i)!
!!!  is the entropy of 

p!(𝑖), 

HY = − p!(i) log! p!(i)!
!!!  is the entropy of 

p!(!), 

H = − P i, j log! P i, j!
!!!

!
!!!  is the 

entropy of P(i, j), 

HXY1 = − P i, j log (p! i p! j )!
!!!

!
!!! , 

HXY2 = − p! i p!(j)log (p! i p! j )!
!!!

!
!!! . 
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