Supplementary Information for

## Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (*Brassica napus* L.)

Chengming Sun<sup>1</sup>, Benqi Wang<sup>1</sup>, Xiaohua Wang<sup>1</sup>, Kaining Hu<sup>1</sup>, Kaidi Li<sup>1</sup>, Zhanyu Li<sup>1</sup>, San Li<sup>1</sup>, Lei Yan<sup>1</sup>, Chunyun Guan<sup>2</sup>, Jiefu Zhang<sup>3</sup>, Zhenqian Zhang<sup>2</sup>, Song Chen<sup>3</sup>, Jing Wen<sup>1</sup>, Jinxing Tu<sup>1</sup>, Jinxiong Shen<sup>1</sup>, Tingdong Fu<sup>1</sup> and Bin Yi<sup>1,\*</sup>

<sup>1</sup>Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Wuhan, 430070, China

<sup>2</sup>Hunan Agricultural University, College of Agronomy, Changsha, 410128, China

<sup>3</sup>Jiangsu Academy of Agricultural Science, Key Laboratory of Cotton and Rapeseed, Nanjing, 210014, China

\*yibin@mail.hzau.edu.cn

## **Supplementary Figure**

Supplementary Figure S1. Overall genome-wide decay of linkage disequilibrium (LD).

Supplementary Figure S2. Enhancive allele number of large and small branch angle lines.

Supplementary Figure S3. Gene Ontology (GO) enrichment diagram of genes locating within the linkage

disequilibrium (LD) decay ranges of significant loci.

**Supplementary Table** 

Supplementary Table S1. Correlations analysis of branch angle in four environments.

Supplementary Table S2. ANOVA analysis of branch angle in four environments.

Supplementary Table S3. Correlations between branch angle and other traits of 2013/2014 Changsha.

Supplementary Table S4. Linkage disequilibrium (LD) decay on A and C subgenome chromosomes in the 520

rapeseed accessions.

## **Supplementary Dataset**

Supplementary Data S1. Branch angle of all branches for 30 lines.

**Supplementary Data S2.** Supplementary Data S2. The phenotypic data for all accessions in four environments and BLUP values and the broad-sense heritability for four environments.

Supplementary Data S3. Genotyping scores of all the polymorphic SNPs for the association panel.

**Supplementary Data S4.** Information of the 530 association panel and group information based on population structure.

Supplementary Data S5. Data of population structure and kinship for the association panel.

Supplementary Data S6. Gene Ontology (GO) enrichment analysis of genes locating within the linkage

disequilibrium (LD) decay ranges of significant loci.

Supplementary Data S7. SNPs and candidate genes significantly associated with branch angle.

Supplementary Data S8. 2012/2013 and 2013/2014 meteorological data of four environments.



Supplementary Figure S1. Overall genome-wide decay of linkage disequilibrium (LD), shown as smoothed r<sup>2</sup> for all

marker pairs on A, C subgenome and whole genome depending on the distance between marker pairs.



Supplementary Figure S2. Favourable allele number of large and small branch angle lines.



Supplementary Figure S3. Gene Ontology (GO) enrichment diagram of genes locating within the linkage

disequilibrium (LD) decay ranges of significant loci.

| Environment        | 2012/2013 Changsha | 2012/2013 Nanjing | 2013/2014 Changsha |
|--------------------|--------------------|-------------------|--------------------|
| 2012/2013 Nanjing  | 0.58***            |                   |                    |
| 2013/2014 Changsha | 0.59***            | 0.54***           |                    |
| 2013/2014 Wuhan    | 0.68***            | 0.58***           | 0.63***            |

**Supplementary Table S1.** Correlations analysis of branch angle in four environments.  $*p \le$ 

0.05; \*\*  $p \le 0.01$ ; \*\*\*  $p \le 0.001$ .

| Source    | DF    | Sum Sq | Mean Sq | F value | Pr(>F) |       |
|-----------|-------|--------|---------|---------|--------|-------|
| Line      | 519   | 294304 | 567     | 32.341  | <2e-16 | ***   |
| Loc       | 2     | 1647   | 824     | 46.968  | <2e-16 | * * * |
| Year      | 1     | 13117  | 13117   | 748.091 | <2e-16 | * * * |
| Line:Loc  | 1033  | 78106  | 76      | 4.312   | <2e-16 | * * * |
| Line:Year | 517   | 30312  | 59      | 3.344   | <2e-16 | * * * |
| Residuals | 14072 | 246732 | 18      |         |        |       |

**Supplementary Table S2.** ANOVA analysis of branch angle in four environments.  $*p \le 0.05$ ;

\*\*  $p \le 0.01$ ; \*\*\*  $p \le 0.001$ .

| Trait | BA      | PH      | BN      | MIPN   | PL      | SNPP |
|-------|---------|---------|---------|--------|---------|------|
| PH    | 0.24*** |         |         |        |         |      |
| BN    | 0.1***  | 0.25*** |         |        |         |      |
| MIPN  | 0.08**  | 0.32*** | 0.08*   |        |         |      |
| PL    | 0.11*** | 0.38*** | 0.09**  | 0.09** |         |      |
| SNPP  | 0.13*** | 0.32*** | 0.02    | 0.06*  | 0.57*** |      |
| SW    | 0.11*** | 0.18*** | -0.09** | 0.2*** | 0.31*** | 0.03 |

**Supplementary Table S3.** Correlations between branch angle and other traits in the 2013/2014 Changsha samples. BA: branch angle; PH: plant height; BN: branch number; MIPN: main inflorescence pod number; PL: pod length; SNPP: seed number per pod; Seed yield were not investigated. The significance level:  $*p \le 0.05$ ;  $**p \le 0.01$ ;  $***p \le 0.001$ .

| Subgenome    | Chromosome | No. of SNPs — | LD decay (Kb)       |                     |  |
|--------------|------------|---------------|---------------------|---------------------|--|
|              |            |               | r <sup>2</sup> =0.1 | r <sup>2</sup> =0.2 |  |
| A subgenome  | A1         | 729           | 827                 | 303                 |  |
|              | A2         | 552           | 824                 | 285                 |  |
|              | A3         | 1041          | 729                 | 225                 |  |
|              | A4         | 762           | 827                 | 278                 |  |
|              | A5         | 761           | 873                 | 356                 |  |
|              | A6         | 747           | 796                 | 236                 |  |
|              | A7         | 939           | 708                 | 254                 |  |
|              | A8         | 504           | 4940                | 1254                |  |
|              | A9         | 748           | 2155                | 873                 |  |
|              | A10        | 825           | 4264                | 764                 |  |
|              | A1-A10     | 7608          | 1046                | 439                 |  |
| C subgenome  | C1         | 1726          | 8278                | 7768                |  |
|              | C2         | 1611          | 8704                | 4493                |  |
|              | C3         | 1901          | 1039                | 507                 |  |
|              | C4         | 2252          | 5845                | 4866                |  |
|              | C5         | 558           | 1282                | 732                 |  |
|              | C6         | 837           | 1218                | 658                 |  |
|              | C7         | 1110          | 6496                | 908                 |  |
|              | C8         | 999           | 6944                | 6342                |  |
|              | C9         | 565           | 2968                | 1085                |  |
|              | C1-C9      | 11559         | 8278                | 7768                |  |
| Whole genome | A1-C9      | 19167         | 6660                | 4311                |  |

Supplementary Table S4. Linkage disequilibrium (LD) decay on A and C subgenome chromosomes in

the 520 rapeseed accessions.