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 2	  

Mathematical model 3	  

 4	  

Stochastic simulations were carried out based on the interactions and biochemical reactions sketched in 5	  

Figure 2B of the main text using Gillespie’s algorithm (Gillespie, 1977) and custom scripts programmed 6	  

in FORTRAN. The biochemical reactions and parameters for the stochastic model of the Pr/Pu system 7	  

are the following: 8	  

 9	  

1.- xylR-mRNA transcription from different Pr promoter states 10	  

 11	  
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where 𝛽! is the basal transcription rate from the free Pr promoter, and 𝑓 𝑅 , 𝑓 𝑅!  and 𝑓(𝐼𝐻𝐹) are Hill 13	  

functions accounting for the inhibitory action of Ri, Ra and IHF on the Pr promoter (Figure 2). Following 14	  

standard models of transcription regulation (Bintu et al., 2005), we assume the general form: 15	  
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where 𝜃! is the threshold for the regulatory action of the species x and 𝑓! the fold-change in expression 18	  

of the regulated species. The basal transcription rates were assumed to be between 35-85 nt/s in 19	  

exponential phase (Vogel and Jensen, 1994). Specifically, 𝛽! was assigned a value of 80 nt/s to match 20	  

measured XylR levels in exponential phase (Fraile et al., 2001). Transcription rates in stationary phase 21	  

were assumed ~2-3 times slower than in exponential phase (Proshkin et al., 2010). Fold-change values 22	  

for negative autoregulation by Ri/Ra (𝑓! and 𝑓!! respectively), as well as for IHF repression (𝑓!"#) were 23	  

taken from experimental observations (Fraile et al., 2001; Silva-Rocha and de Lorenzo, 2011), while 24	  

thresholds 𝜃! were set to match the desired response taking into account XylR and IHF levels. All 25	  

parameter values and references are listed in Table 1 of the main text. 26	  

 27	  



 2	  

2.- Translational repression of XylR by Crc 1	  
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 3	  

where 𝜇 is the association constant for Crc and xylR-mRNA. 4	  

 5	  

3.- XylR activation/inactivation  6	  
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where the effective association constant for Ri dimers (𝐾!!") depends on the presence of the inducer m-8	  

xylene. Here we assume the general Michaelis-Menten form 9	  
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where the activation constant in the absence of inducer, 𝑘!, should be very small to account for the fact 12	  

that expression of Pu in non-inducing conditions(m-xyl = 0) is practically shut off (Silva-Rocha and de 13	  

Lorenzo, 2012). The induction strength fm mainly affects the fold-change observed in Pu expression 14	  

after exposure to m-xyl and is adjusted to reproduce experimental observations. The ratio 𝑚𝑥𝑦𝑙/𝜃! is 15	  

chosen large, to reflect the fact that cells are exposed to saturating vapors of m-xylene in the induced 16	  

state. The inactivation constant 𝐾!
!"" modulates the presence of transcription bursts in xylR-mRNA, and 17	  

affects the ‘leakage’ between the low and high expression peaks of Pu-GFP in the bimodal distributions. 18	  

 19	  

4.- Pu activation/inactivation by XylR 20	  
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where the activation rate 𝐾!!"(𝐼𝐻𝐹) depends on the amount of the regulator IHF available to the Pu 24	  

promoter, as both IHF and Ri are necessary for Pu transcription (Silva-Rocha and de Lorenzo, 2011). 25	  

Again, we consider a phenomenological activation rate as 26	  



 3	  
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 3	  

The dissociation constant 𝐾!
!"" is assumed to be independent of IHF for simplicity. Note that all effects 4	  

due to IHF binding/unbinding can be included in the effective activation rate 𝐾!!" 𝐼𝐻𝐹  by appropriately 5	  

choosing the parameters. The parameters ku and 𝐾!
!"" control the induction time of the GFP 6	  

distributions as well as the transcription bursts in Pu-GFP mRNA. In our model, fu is fixed to mimic the 7	  

experimental fold-change in Pu activity (Valls et al., 2002) while ku and 𝐾!
!"" are adjusted to reproduce 8	  

the observed behavior in the stochastic distributions in exponential phase. 9	  

 10	  

5.- Pu-GFP transcription 11	  
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6.- XylR and GFP translation 15	  
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Translation rates may also be 2-3 times slower in stationary phase compared to exponential phase 17	  

(Proshkin et al., 2010). We considered values in the range 5-20 aa/s, and adjusted XylR translation rate 18	  

(𝜌!) to achieve the experimentally observed levels in exponential and stationary phases (Fraile et al., 19	  

2001). 20	  
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7.- mRNA and protein degradation 22	  
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Typical mRNA half-lives in bacteria are between 2-10 min (Bernstein et al., 2002; Taniguchi et al., 24	  

2010). Ri and GFP proteins are stable and degradations assumed to be dominated by cell growth and 25	  



 4	  

dilution in exponential phase, 𝛿!,!"#~ ln 2 𝜏! , where 𝜏! is the cell division time, which is about 40 1	  

mins (Fonseca et al., 2011). 2	  

 3	  

All these reactions were included into Gillespie’s algorithm (Gillespie, 1977) to simulate the stochastic 4	  

time evolution of the different molecular species. Distributions of Pu-GFP levels for different parameters 5	  

and growth state were obtained running ensembles of 20,000 stochastic trajectories and recording the 6	  

number of GFP molecules at different induction times. To mimic experimental fluorescence background 7	  

we added a constant production rate of GFP (100 molec./h).  8	  

 9	  

Parameter fitting 10	  

 11	  

All parameters that were not directly taken from previous experimental data were manually adjusted with 12	  

the following procedure: First, we estimated some parameters values/ranges using deterministic models 13	  

(see below). For instance, Crc levels were adjusted in exponential phase to give deterministic (average) 14	  

values of XylR protein in agreement with previous experimental measurements (Fraile et al., 2001), that 15	  

is, ~15 Ri dimers. Then, for stationary phase we decreased 4-fold Crc levels, as observed 16	  

experimentally (Ruiz-Manzano et al., 2005; Silva-Rocha and de Lorenzo, 2011) and readjusted basal 17	  

transcription/translation rates within physiological ranges to achieve the measured levels of XylR in 18	  

stationary phase, ~60 Ri dimers (Fraile et al., 2001). To estimate activation/inactivation rates of Pr and 19	  

Pu promoters, we note that steady state values of the different molecular species depend only on the 20	  

ratios 𝐾!!" 𝐾!
!"" and 𝐾!!" 𝐾!

!"", but the induction dynamics (response time after induction with m-21	  

xylene) is sensitive to the individual rates. We used the experimental induction curve in exponential 22	  

phase to delimit their values (Figure S1), which were further confirmed by simulation of the stochastic 23	  

GFP distributions (Figure 3, main text). We note that these rates were unchanged in stationary phase 24	  

conditions but reproduced equally well experimental induction curves and GFP distributions, validating 25	  

our estimation. 26	  
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Deterministic equations 28	  

 29	  

To fit some of the model parameters and compare with the stochastic simulations (Figures 3 and 5), we 30	  

also implemented a deterministic ordinary differential equation model, that was solved using custom 31	  
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scripts written in MATLAB 2011 (The Mathworks, Inc.). Reactions (1)-(15) , combined with mass action 1	  

kinetics, give the following set of ordinary differential equations for the time evolution of species 2	  

concentrations: 3	  

 4	  
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The deterministic rate constants are the stochastic rate constants in Table 1 rescaled by cell volume 6	  

where needed. Since Pseudomonas putida has a volume of  ~10-15 l, we assume that 1 molecule/cell ~ 7	  

1nM.  8	  

 9	  

Model for the lacIq-Ptrc-xylR construct 10	  

 11	  

Expression of xylR mRNA is increased and controlled by a lacI-Ptrc promoter and the addition of the 12	  

inducer IPTG. The LacI repressor protein binds to the lacI promoter at a site overlapping the binding site 13	  

of the σ70 unit of the RNAP, suppressing transcription from this promoter. LacI is deactivated by IPTG: 14	  

binding of IPTG to LacI induces a conformational change in the LacI structure, such that the complex 15	  

LacI-IPTG is unable to bind the lacI promoter, and transcription takes place. Within our experimental 16	  

conditions (addition of IPTG to the cells, incubation during 4h to reach mid-exponential phase and then 17	  

addition of the m-xylene inducer), we may assume that the concentration of LacI repressor protein 18	  

inside cells has reached stationary levels. Therefore, the concentration of LacI repressor as a function of 19	  

IPTG can be obtained as (Setty et al., 2003; Yagil and Yagil, 1971): 20	  

 21	  
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 6	  

 1	  

where L is the concentration of free LacI repressor, LT the total amount of LacI (free plus LacI-IPTG 2	  

complex), IPTG the concentration of IPTG inducer and θIPTG the threshold for LacI inactivation. On the 3	  

other hand, the action of the LacI repressor on lacI-Ptrc transcription can be assumed to follow a 4	  

Michaelis-Menten kinetics (Ozbudak et al., 2004; Setty et al., 2003). Therefore, reactions (1)-(3) for xylR 5	  

transcription are replaced by 6	  
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where the regulation function f(L) takes the form 8	  

 9	  
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Using Eq. (17) in (19), we obtain the transcription rate from the lacI-Ptrc promoter directly as a function 11	  

of the IPTG concentration: 12	  

 13	  
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and 𝑎 ≡ 𝐿!/𝜃!.  16	  

 17	  

To estimate the parameters in (20)-(21), we note that Eq. (21) can be related to a simpler regulation 18	  

function 19	  

 20	  
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 22	  

with a threshold KIPTG and a fold-change parameter fIPTG, that directly represent the effect of IPTG 23	  

addition on xylR mRNA.  To mimic the behavior of the experimental distributions as a function of IPTG 24	  

concentration, we find that proper threshold and fold-change values for IPTG induction are KIPTG = 75 25	  



 7	  

µM and fIPTG = 1/3 respectively. Then, by choosing a sufficiently large value of a (LacI levels in the 1	  

absence of IPTG well above repression threshold), the values of fL and θIPTG can be calculated as 2	  

 3	  

𝑓! =
𝑎

𝑓!"#$ 1 + 𝑎 − 1
,                𝜃!"#$ =

𝐾!"#$! ∙ 𝑓! ∙ (1 − 𝑐)
𝑐 ∙ 𝑓! 1 + 𝑎 − (𝑎 + 𝑓!)

, 

 4	  

where  𝑐 ≡ (1 + 𝑓!"#$)/2 . The values of a, fL and θIPTG are given in Table 1. The basal transcription 5	  

rate γR is chosen to reproduce the experimental observation that in the absence of IPTG, the lacI-Ptrc 6	  

promoter produces a leak expression of ~2-fold that of the native Pr promoter (de Lorenzo et al., 1993; 7	  

Silva-Rocha and de Lorenzo, 2011). To summarize, the simulations for the IPTG induced lacI-Ptrc-Pu 8	  

system were carried out with Eqs. (20)-(21) replacing Eqs. (1)-(3) for the stochastic reactions of xylR-9	  

mRNA transcription. The rest of the reactions and parameters were left unchanged. 10	  

 11	  
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 9	  

Supplementary Figure S1. Activation/deactivation rates of XylR and Pu promoter (control induction 1	  
times) 2	  

 3	  

To allow for a comparison between experimental fluorescence intensities and numerical GFP levels, the 4	  
induction response is obtained as the normalized fold-change in mean GFP level as a function of time.  5	  
Red dots correspond to the experimental values, while curves are the result of simulations using the 6	  
deterministic model (Materials and Methods). (A) Effect of activation/deactivation rates for XylR 7	  
(parameters KR and KRoff respectively) on the induction response in exponential phase. (B) Effect  of 8	  
activation/deactivation rates of the Pu promoter due to Ra (parameters KU and KUoff respectively) on the 9	  
induction times in exponential phase. Green lines are obtained with the values used in all stochastic 10	  
simulations, shown in Table 1. (C) These parameters were adjusted in exponential phase, but 11	  
reproduced the experimental induction response also in stationary phase 12	  

13	  



 10	  

Supplementary Figure S2. Releasing post-transcriptional repression of XylR reduces variability in 1	  

exponential phase.  2	  

 3	  

 4	  

 5	  

(A) Stochastic distributions of Pu-GFP levels in exponential phase conditions, except that Crc 6	  

abundance is decreased 4-fold (to the levels found in stationary phase). (B) Typical stochastic 7	  

trajectories showing the increase in active XylR (top panel, blue line is the average value) due to the 8	  

release of post-transcriptional repression by Crc. The Pu promoter undergoes relatively frequent 9	  

inactivation events but of very short duration (mid panel). This implies that Pu mRNA fluctuations are 10	  

fast and population responses unimodal. 11	  
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