
Supplemental material 6 The deficiency of NIM network in PrP-hAβPPswe/PS1
ΔE9

 mice 

Indictor Model Age(month) Gender Site Feature Reference 

Hypothalamic-pituitary-adrenal (HPA) axis 

CRH Tg2576 12 Male Hypothalamus Increase [1] 

  18 Male Hypothalamus Not significant [1] 

  24 Male Hypothalamus Decrease [1] 

CORT PrP-hAβPPswe/PS1
ΔE9

  8 Male Plasma Increase [2] 

 Tg2576 6.75 Male and Female Plasma Increase [3] 

  4 Female Serum Increase [4] 

 PS1M146V/APPswe/ tauP301L 7 Male Plasma Not significant [5] 

  14 Male Plasma Not significant [5] 

  20 Male Plasma Not significant [5] 

  15 Male Plasma Increase [6] 

  9 Male Plasma Increase [7] 

  12 Male Plasma Increase [7] 

  15 Male Plasma Increase [7] 

  18 Male Plasma Increase [7] 

Hypothalamus-pituitary-gonadal (HPG) axis 

T TASTPM 12.5 Male Plasma Decrease [8] 

Proinflammatory factor 

Interleukin 

IL-1β PrP-hAβPPswe/PS1
ΔE9

  9 Female Serum Increase [9] 

  7 - Hippocampal and Cortex Increase [10] 

  9 Male Brain Increase [11] 

  9 Male Brain Increase [12] 

  12 Female Cortex Increase [13] 

  9.5 Male Cortex Increase [14] 

  8~9 Female and Male Hippocampal and Cortex Increase [15] 

  7 - Cortex Increase [16] 

 APP V717I 10 - Cortex Increase [17] 

 APP751SL /PS1M146L 6 Male Microglial cell Increase [18] 

  18 Male Microglial cell Increase [18] 



Indictor Model Age(month) Gender Site Feature Reference 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

IL-2 APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

 APPK670N/M671L/PS1M146L 11 - Plasma Increase [20] 

IL-6 PrP-hAβPPswe/PS1
ΔE9

  9 Male Brain Increase [12] 

  15-24 Male or female Serum Increase [21] 

  9 Female Serum Increase [22] 

  6 Female Serum Not significant [23] 

  9 Female Serum Increase [23] 

  12 Female Serum Increase [23] 

  9 - Hippocampus Increase [24] 

  14 - Hippocampus Increase [24] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

 APPswe/PS1-A246E 12 Male  Brain Increase [25] 

IL-17 APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

Colony stimulating factor 

GM-CSF PrP-hAβPPswe/PS1
ΔE9

  9 Female Serum Increase [9] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

  11 - Plasma Increase [20] 

Interferon 

IFN-γ PrP-hAβPPswe/PS1
ΔE9

  15-24 Male or female Serum Increase [21] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

 APPK670N/M671L/PS1M146L 11 - Plasma Increase [20] 

Tumor necrosis factor 

TNF-α PrP-hAβPPswe/PS1
ΔE9

  7 - Hippocampal and Cortex Increase [10] 

  9 Male Brain Increase [11] 

  10 Male Brain Increase [12] 

  9.5 Male Cortex Increase [14] 

  9 Female Serum Increase [22] 

  6 Female Serum Not significant [23] 

  9 Female Serum Increase [23] 

  12 Female Serum Increase [23] 

  9 - Hippocampus Not significant [24] 



Indictor Model Age(month) Gender Site Feature Reference 

  14 - Hippocampus Increase [24] 

  7 - Cortex Increase [16] 

 PS1M146V/APPswe/ tauP301L 6 Male Hippocampus Increase [26] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

 APPK670N/M671L/PS1M146L 11 - Plasma Increase [20] 

 APPswe/PS1-A246E 12 Male  Brain Increase [25] 

 APP751SL /PS1M146L 18 Male Microglial cell Increase [18] 

 APP V717I 10 - Cortex Increase [17] 

Chemotactic factor 

MCP-1 PrP-hAβPPswe/PS1
ΔE9

  4.5 Male or female Brain Not significant [27] 

  6.5 Male or female Brain Not significant [27] 

  12.5 Male or female Brain Increase [27] 

  9 - Hippocampus Not significant [24] 

  14 - Hippocampus Not significant [24] 

MIP-1β APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

Eotaxin APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

RANTES APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 

Antiinflammatory factor 

IL-4 PrP-hAβPPswe/PS1
ΔE9

  9 Female Serum Not significant [9] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

 APPK670N/M671L/PS1M146L 11 - Plasma Increase [20] 

IL-5 APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

IL-10 PrP-hAβPPswe/PS1
ΔE9

  9 Female Serum Not significant [9] 

  9.5 Male Cortex Not significant [14] 

 APPK670N/M671L/PS1M146V 14.5 - Plasma Increase [19] 

G-CSF APPK670N/M671L/PS1M146V 14.5 - Plasma Not significant [19] 
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