Upregulation of E2F8 promotes cell proliferation and tumorigenicity in breast cancer by modulating G1/S phase transition

Supplementary Materials

SUPPLEMENTARY MATERIALS AND METHODS

RNA extraction, reverse transcription (RT) and real-time PCR

Total RNA was extracted from cultured cells using the Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions. 2 μ g extracted RNA from each sample was used for cDNA synthesis with M-MLV Reverse Transcriptase (Promega, Madison, US). cDNAs were amplified and quantified by SYBR-Green in ABI Prism 7500 Sequence Detection System (Applied Biosystems, Texas, US). Expression data were normalized to the housekeeping gene GAPDH and calculated as 2^{-[(Ct of *GaPDH*)]}, where Ct represents the threshold cycle for each transcript.

Flow cytometry

Cells were harvested and fixed in 75% ethanol, and stored at 4°C overnight for later cell cycle analysis using flow cytometry. The fixed cells were centrifuged at 1,000 rpm for 5 minutes and washed with cold 1 × PBS twice. RNase A (20 µg/ml final concentration) and propidium iodide staining solution (50 µg/mL final concentration) were added to the cells and incubated for 30 minutes at 37°C in the dark. 2×10^5 cells were analyzed using a FACSC alibur instrument (BD Biosciences) equipped with CellQuest 3.3 software. Modfit LT 3.1 trial cell cycle analysis software was used to determine the percentage of cells in the different phases of the cell cycle.

Bromodeoxyuridine incorporation assay

To evaluate the cell population in S phase of the cell cycle, cells were incubated with bromodeoxyuridine (BrdU; Sigma-Aldrich) for 1 h and incubated with anti-BrdU antibody (Upstate, Billerica, MA, USA). The samples images were acquired under a laser scanning microscope (Axioskop 2 plus; Carl Zeiss Co Ltd, Oberkochen, Germany).

Transwell assay

Cells (2×10^4) were seeded on the transwell inserts (pre-coated with Matrigel for invasion assay; didn't pre-coat with Matrigel for migration assay) with 8 µm micropore filters (Corning Costar) in 500 µl medium. Medium containing 10% FBS was added to the lower chamber as a chemoattractant. After 24 h, cells on the upper side of the filter were removed with a cotton swab. Cells that had penetrated to the lower membrane surface were fixed in 1% paraformaldehyde, stained with hematoxylin and counted under an optical microscope (×100 magnification). Cell counts are expressed as the mean number of cells from 10 random fields per well.

Primers and oligonucleotides:

Real-time PCR primers:				
Gene	Forward primer (5'–3')	Reverse primer $(5'-3')$		
E2F8	GAAATCCCAACCAAGTCGAA	CTTCGTCAAGGCAGATGTCA		
CCNE1	CGGTATATGGCGACACAAGA	ACATACGCAAACTGGTGCAA		
CCNE2	AGGAAAACTACCCAGGATGTCA	ATCAGGCAAAGGTGAAGGATTA		
GAPDH	GCACCGTCAAGGCTGAGAAC	TGGTGAAGACGCCAGTGGA		
The primers us	sed for promoter luciferase reporter:			
Gene	Forward primer $(5'-3')$	Reverse primer $(5'-3')$		
CCNE1 promoter	AGGTACCGAGCTCTTACGCGTGCCATG ATACTTTGAAGGACTTAGCCC	TGCAGTCGGGGGGGGGGAGATCTCAGGAGT CCCTGTCCGCAG		
CCNE2 promoter	AGGTACCGAGCTCTTACGCGTGCCCC AGTCTCCTTTCCCTCCTTC	TGCAGTCGGGGCGGCAGATCTGCATT CTGTTCACATAATAGTCAAGG		
The primers us	sed for ChIP:	·		
Gene	Forward primer (5'–3')	Reverse primer (5'–3')		
CCNE1 p1	ATGATACTTTGAAGGACTTAGCCC	GCCCTTCTTAAGCTAAAGTCTCAG		
CCNE1 p2	GGACAGGACTGAGACTTTAGCTTAA	CTTGTCTCTCCCCACCTTG		
CCNE1 p3	CAGTGAGCAAGATGGGCAAG	ACAGGACCTGACCCTGATCC		
CCNE1 p4	GGAGAGGAGGCCTGAGGTC	TGGCTCTCTGAAGACCTTTCTG		
CCNE1 p5	GGAATCCCAGAGTCAGAAAGGT	GGACATCCCCAAGGTCACC		
CCNE1 p6	CGGTGACCTTGGGGATGT	GGACGCGGGAGAAGTCTG		
CCNE1 p7	GCCAGACTTCTCCCGCGT	GGCTCAGAGCGGGACATTTA		
CCNE1 p8	TAAATGTCCCGCTCTGAGCC	CAGGAGTCCCTGTCCGCAG		
CCNE2 p1	CCAGTCTCCTTTCCCTCCTTC	GAGAGCCGCCCCTCATTC		
CCNE2 p2	CCAAATGAGGGTGGGATAGAG	GTCTGGCGGTGAGGAGTTG		
CCNE2 p3	CGCAGCAACTCCTCACCG	GAGAGTTTCCCTACCGCCG		
CCNE2 p4	ACTCTACCGGGCCTTCTGC	GAAAGACCTGGGTTCCCTGAG		
CCNE2 p5	CCTAGCTGTCCCGCCAAG	GGAAAGCAGGGTTGATACATACC		
CCNE2 p6	GGTATGTATCAACCCTGCTTTCC	CGTGGTGGCGATCTTTCTTC		
CCNE2 p7	CGGGTGGGAAGAAGATCG	AAAACCTGTTTGCGGAATACC		
CCNE2 p8	AACTGCACATCGTCAAGTCAGAC	AAGTGTGAAAAAGGACTTCGCC		
CCNE2 p9	GCGGGCGAAGTCCTTTTT	CCTGACCCCTTTTCTTGACATC		
CCNE2 p10	AAAGGTCTAACAGCATGATGTCAAG	GCATTCTGTTCACATAATAGTCAAGG		

Characteristics		Total	(%)
	< 48	91	48.7
Age (years)	≥ 48	96	51.3
C 1	Male	0	0.0
Gender	Female	187	100.0
	Ι	33	17.6
	II	95	50.8
Clinical stage	III	51	27.3
	IV	8	4.3
	T1	55	29.4
Τ -1: 6 4	T2	103	55.1
1 classification	Т3	18	9.6
	T4	11	5.9
	N0	84	44.9
	N1	54	28.9
N classification	N2	32	17.1
	N3	17	9.1
Malaasi Caadian	M0	180	96.3
M classification	M1	7	3.7
	0	87	46.5
	1	35	18.7
Estrogen Receptor (ER)	2	18	9.6
	3	46	24.6
	4	1	0.5
	0	83	44.4
Progesterone Receptor	1	33	17.6
(PR)	2	34	18.2
	3	37	19.8
	0	92	49.2
Erb-b2 receptor tyrosine	1	27	14.4
kinase 2 (ErbB2)	2	22	11.8
	3	46	24.6
	0	34	18.2
W'(7	1	69	36.9
K16/	2	52	27.8
	3	32	17.1
	Low	95	50.8
E2F8 expression	High	92	49.2
TT ² 1 1 1 1	Alive	131	70.1
vital status	Dead	56	29.9

Supplementary Table S1: Clinicopathological characteristics of studied patients and expression of E2F8 in breast cancer

		E2F8		
Characteristics		Low expression (50.8%)	High expression (49.2%)	X^2 test p value
A co (voors)	< 48	48	43	0.604
Age (years)	\geq 48	47	49	0.004
	Ι	21	12	
Clinical stage	II	54	41	0.007
Clinical stage	III	19	32	0.007
	IV	1	7	
	T1	33	22	
Talagaification	T2	54	49	0.021
1 classification	Т3	6	12	0.031
	Τ4	2	9	
	NO	53	31	
N aloggification	N1	25	29	0.014
IN Classification	N2	11	21	0.014
	N3	6	11	
Malagrification	M0	94	86	0.040
M classification	M1	1	86 6 48	0.049
	0	39	48	
	1	17	18	
ER	2	11	7	0.290
	3	28	18	
	4	0	1	
	0	42	41	
DD	1	16	17	0.021
ΓK	2	19	15	0.921
	3	18	19	
	0	49	43	
ErhD)	1	13	14	0.026
EIUDZ	2	11	11	0.920
	3	22	24	
	0	20	14	
V;67	1	44	25	0.005
К167	2	17	35	0.005
	3	14	18	
Vital status	Alive	80	51	< 0.001
Vital status	Dead	15	41	

Supplementary Table S2: Correlation between the clinicopathological features and expression of E2F8

	Univariate analysis		Multivariate analysis	
	Р	Hazard ratio (95% CI)	Р	Hazard ratio (95% CI)
Clinical stage		2.064		2,42,4
I-II	< 0.001	2.864	0.001	2.424 (1.416–4.150)
III-IV		(1.075-4.045)		
E2F8		3.619 (1.999–6.553)	0.001	2.697 (1.463–4.974)
Low expression	< 0.001			
High expression				
Ki67		2.137	0.022	1.896 (1.099–3.271)
Low expression	0.006			
High expression		(1.249-3.030)		

Supplementary Table S3: Univariate and multivariate analysis of different prognostic parameters in patients with breast cancer by Cox-regression analysis

Supplementary Figure S1: Kaplan-Meier survival curves from publicly available microarray data for breast cancer patients. Overall survival, relapse-free survival and distant metastasis-free survival in breast cancer patients with high and low levels of E2F8 mRNA (auto selecting best cutoff) were analyzed using the publicly accessible tool KM Plotter (http://kmplot.com/breast/). The two cohorts of patients were compared by log-rank tests, and the hazard ratio with 95% confidence intervals was calculated.

Supplementary Figure S2: Effect of E2F8 overexpression and knockdown on cell migration and invasion. (A) Transwell migration assays. The cells were transferred into transwell inserts without matrigel-coated membranes and assessed 24 hours after incubation. (B) Transwell invasion assays. The cells were transferred into transwell inserts containing matrigel-coated membranes and assessed 24 hours after incubation. Mean \pm SD in three independent experiments. Two sided *t* test. **P* < .05.

Supplementary Figure S3: Expression of E2F8 in xenografts examined by western blot. E2F8 was robustly upregulated in tumors formed by SK-BR-3/E2F8 cells, but downregulated in tumors formed by E2F8-silencing SK-BR-3 cells.

Supplementary Figure S4: Expression of E2F8 positively correlating with CCNE1 and CCNE2. Bivariate correlations between E2F8 and CCNE1(A)/CCNE2 (B) mRNA expression by Spearman's rank correlation coefficients from TCGA BRCA mRNA data set (n = 1094).

Supplementary Figure S5: ChIP-validated E2F8 binding to CCNE1 and CCNE2 promoter. (A) ChIP enrichment assay confirms that E2F8 binds to both the P7 ChIP primer PCR site of CCNE1 and CCNE2 in the E2F8-silencing cell. (B) The P6 ChIP primer PCR site of CCNE1 and the P7 ChIP primer PCR site of CCNE2 promoters enriched by pulling downing transcription activation marker H3K27Ac or IgG. IgG was used as a negative control. Results were evaluated from three independent experiments, *P < 0.05.