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Supplementary Figure 1. Phylogeny and domain analysis of PKS-1 and NRPS-1 homologs.
Phylogeny and protein domain analysis was performed as described in the methods for PKS-1 homologs
(a) and NRPS-1 homologs (b) in the following nematode species: Ancylostoma ceylanicum (a,
EYC37444.1; b, EYB85901.1), Ancylostoma duodenale (a, KIH69030.1; b, KIH67424.1), Ascaris suum

(a, PRJINAB80881;

b, GS 05892), Brugia malayi (a, CDQO05007.1; b, XP_001901640.1),

Bursaphelenchus xylophilus (a, BUX.s00713.159; b, BUX.gene.s01513.336), Caenorhabditis angaria
(a, Cang 2012 03 13 00116.g4813; b, Cang 2012 03 13 00228.97416), C. brenneri (a,
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EGT30644.1; b, EGT46479.1), C. briggsae (a, EGT30644.1; b, CAP32083.2), C. elegans (a,
NP_508923.2; b, CAC70135.3), C. japonica (a, CJA00126; b, CJA13923), C. remanei (a,
XP_003118401.1; b, EFP02416.1), C. tropicalis (a, Cspll.Scaffold626.96628; b,
Cspll.Scaffold488.g2019), Dirofilaria immitis (a, nDi.2.2.2.g06619; b, nDi.2.2.2.903539),
Haemonchus contortus (a, CDJ83277.1; b, CDJ93083.1, CDJ93084.1, CDJ82649.1), Heterorhabditis
bacteriophora (a, ACKM01001433.1; b, Hba 08702), Loa Loa (a, EJD75257.1; b, EFO26749.2),
Necator americanus (a, ETN74557.1; b, NECAME_19208, NECAME_19210), Oesophagostomum
dentatum (a, KHJ99846.1; b, KHJ98077.1), Onchocerca volvulus (a, OVOC1839; b, OVOC7029),
Pristionchus exspectatus (a, scaffold450-EXSNAP2012.7; b, scaffold1344-EXSNAP2012.3), P.
pacificus (a, PPA23686; b, PPA07616, PPA07617, PPA31783), Steinernema carpocapsae (a,
L596 g18665.t1; b, L596 g20331.t1), Strongyloides stercoralis (a, SSTP_0001127100.1; b,
SSTP_0000446000.1), Toxocara canis (a, KHN84567.1). If available, the Genbank accession number
for the protein is listed, or, if not available, the protein name from Wormbase Parasite is listed. If a
given species contained multiple proteins with homology to pks-1 and/or nrps-1, the domains were
annotated for all of the proteins using antiSMASH?, but only the longest protein was used for generation
of the phylogenetic tree. For the H. bacteriophora pks-1 homolog, DNA sequence rather than protein
sequence was analyzed (by first converting it to protein sequence using antiSMASH'). Domains
depicted include ketosynthase (KS, pink), acyl carrier protein (ACP, grey), ketoreductase (KR, green),
acyl transferase (AT, yellow), peptidyl carrier protein (PCP, grey), condensation (C, light blue),
adenylation (A, dark purple), thioesterase (TE, light purple).



a Extracted lon Chromatogram: 755.3652 - 755.3790 m/z b Extracted lon Chromatogram: 757.3712 - 757.3991 m/z
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Supplementary Figure 2. Extracted ion chromatograms. Extracted ion chromatograms for m/z 755
(a,c) and m/z 757 (b,d) in wild-type versus pks-1 mutant samples (a,b) and in wild-type versus nrps-1
mutant samples (c,d). The m/z 755 feature always appears as one major and one minor peak, likely
indicating two isomers. Images were generated in XCMS.?



Supplementary Figure 3. NMR spectra for nemamide A in dimethyl sulfoxide-ds.
(a) *H NMR spectrum (with water suppression, contaminant peaks are indicated with asterisks).
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(b) *H NMR spectrum (without water suppression, contaminant peaks are indicated with asterisks).
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https://en.wikipedia.org/wiki/Dimethyl_sulfoxide

(c) dgqf-COSY spectrum.
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(d) dgf-COSY spectrum (0.5-5ppm region).
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(e) TOCSY spectrum.
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(F) HSQC spectrum.
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(g) HSQC spectrum (0.5-5ppm region).
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(h) HMBC spectrum.
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(i) HMBC spectrum obtained on a Bruker Avance 800 MHz NMR spectrometer.
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(J) ROESY spectrum.
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Supplementary Figure 4. Key dgf-COSY, HMBC, and ROESY correlations used to establish the
molecular connectivity of nemamide A.
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Supplementary Figure 5. Relative configuration of the stereocenters at C-2 and C-18. Nemamide
A must have the absolute configuration shown (2S,18R) or the opposite absolute configuration (2R,18S)
based on key ROESY correlations (indicated with orange double-headed arrows). The conformation
depicted accounts for the weak J coupling between H-17a and 18 and the strong J coupling between H-
17b and 18.

Supplementary Figure 6. Relative configuration of the stereocenters at C-18 and C-20. (a)
Nemamide A has the absolute configuration shown (18R,20R) or the opposite absolute configuration
(18S,20S) based on key ROESY correlations (indicated with orange double-headed arrows). The
depicted conformation accounts for the weak J coupling between H-20 and H-21b and the strong J
coupling between H-20 and H-21a. (b) The absolute configuration shown (18R,20S) or the opposite
absolute configuration (18S,20R) is unlikely given the relative strength of the three ROESY correlations
shown, as well as the fact that no correlation between H-17a and H-21b is observed in the ROESY
spectrum.
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Supplementary Figure 7. Relative configuration of the stereocenters at C-20 and C-22. Nemamide
A must have the absolute configuration shown (20R,22S) or the opposite absolute configuration
(20S,22R) based on key ROESY correlations (indicated with orange double-headed arrows). The
depicted conformation accounts for the weak J coupling between H-20 and H-21b and the strong J
coupling between H-20 and H-21a. It also accounts for the weak J coupling between H-21a and H-22
and the strong J coupling between H-21b and H-22.
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Supplementary Figure 8. Chemical structures of the model cyclic peptides that were synthesized
in order to determine the absolute configurations of C-2, C-6, C-10, and C-18 in nemamide A.
There are three possible positions for the L-Asn in the macrolactam ring of nemamide A, leading to the
configurations 2S,6R,10R, 2R,6S,10R, and 2R,6R,10S. The relative configuration of the stereocenter at
C-18 can be determined relative to the configuration of the most C-terminal Asn (that is, the
configuration of the stereocenter at C-2), based on key ROESY correlations (Supplementary Fig. 5).
Therefore, there are three possible absolute configurations for the four stereocenters in the macrolactam
ring of nemamide A. Model cyclic peptides in which the polyketide tail of nemamide A was truncated
as a methyl group were synthesized with the three possible absolute configurations of the four
stereocenters: cyclic peptide 3 (2S,6R,10R,18R), cyclic peptide 4 (2R,6S,10R,18S), and cyclic peptide 5
(2R,6R,10S,18S).
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Supplementary Figure 9. Predicted and observed CD spectra of nemamide A. (a) Structures of
model compounds | and Il that were used to generate calculated CD spectra. In nemamide A, the
configuration of the stereocenter at C-22 can be determined relative to the configuration of the
stereocenter at C-20, based on key ROESY correlations (Supplementary Fig. 7). Thus, nemamide A is
either 20R,22S or 20S,22R. The Cotton effects in the CD spectrum of nemamide A are predicted to
depend largely on the configuration of the stereocenter nearest to the triene chromaphore (C-22). Thus,
comparison of the calculated CD spectra of model compounds I and 11 to the CD spectrum of nemamide
A should provide further confirmation of the absolute configuration of C-22 (and therefore C-20) in
nemamide A3* (b) CD spectrum of nemamide A obtained in methanol, as well as calculated CD
spectra of model compounds | (corresponding to nemamide A with 20S,22R configuration) and Il
(corresponding to nemamide A with 20R,22S configuration), suggesting that nemamide A has the
20R,22S configuration. The CD spectrum of nemamide A is weak because the compound has limited
solubility in methanol and only dissolves well in dimethyl sulfoxide, which is not compatible with CD
spectroscopy (of nemamide A). For calculating the CD spectra of the model compounds, the low energy
conformations of the compounds were first calculated using Sybyl-X 2.1. Specifically, the random
search algorithm was performed (100 cycles with an energy cutoff of 3.0 kcal/mol) while enforcing the
constraints that the dihedral angles between “H-20” and “H-21a” and between “H-21b” and “H-22”
should be 180° and that the distances between “H-20” and “H-22”, “H-21a” and “H-24", and “H-21b”
and “H-24” should be 0-3 A (based on relevant coupling constants and ROESY correlations for
Nemamide A; see Supplementary Table 1 and Supplementary Fig. 3). The CD spectra of the low energy
conformers of the model compounds were then calculated using time dependent density functional
theory (B3LYP functional/ 6-31G(d) basis set) with Gaussian 09. No UV shift correction was required.
A sigma value of 0.16 eV was applied to the simulated CD spectra in SpecDis 1.60. The calculated CD
spectra for the low energy conformers of each model compound were then Boltzmann-averaged.> The
calculated CD spectra of the two model compounds are not exact mirror images because a defined
(rather than infinite) number of low energy conformations were used to generate the Boltzmann-
averaged CD spectrum.>®
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Supplementary Figure 10. In-source collision-induced dissociation (CID) of nemamide A and B.
Both nemamide A and B undergo a neutral loss to yield the same product ion, indicating that the
additional double bond in nemamide B is located in the neutral loss fragment.
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Supplementary Figure 11. High-resolution LC-MS data for in-source collision-induced
dissociation (CID) of nemamide A and B. Raw data for nemamide A (a) and nemamide B (b) that

serve as the basis for Supplementary Figure 10.

21



Supplementary Figure 12. NMR spectra for nemamide B in dimethyl sulfoxide-de.
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https://en.wikipedia.org/wiki/Dimethyl_sulfoxide

(c) dgf-COSY spectrum.

.
-

9.0 8.5 8.0 75 7.0 6.5 6.0 5.5 5.0 45 4.0
f2 (ppm)

f1 (ppm)

23



(d) dgf-COSY spectrum (0.5-5ppm region).
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PKS-1 KR3 NVFKSLG-FKKFSVVINCVGVET--SAKMNKTSLEQEIVLSPKTEGSVNILKCLEEFSIE 177
. - . . K - . * . .

SPN_KR3 LDAFVLFESSGAGVWGGGGQGAYGAANAFLDTLAEQRRARGLPATSISWGSWAGGGMADG— 483
AMPiKRZ LDAFVLFSSGAAVWGSGGQPGYAAANAYLDALAEHRRSLGLTASSVAWGTWGEVGMATDP 426
SPN_KRZ -VALVLFSSVSGVLGSGGQGNYAAANSFLDALAQQRQSRGLPTRSLAWGPWAEHGMASTL 715
PKS—l_KRl IENFIMMSSFTAACGNEGQLNYGVSNAYLEYQVQRRRRQGKSGCAIQWGNWIDTGMATDE 264
PKS—liKRZ —--HFVFSSSIANVLGSYGQSNYAFSNGLVTSFLETSSTKS——-TIIHWGPWKDVGMLAQP 208
PKS-1 KR3

VDKLVNFSSLSSVVPLLGNFDYASANCFVEALTKQGSKYIKQFLTLSLPPLEGSRMYESS 237

kk . * o * . % . . *

Supplementary Figure 13. Alignment of the PKS-1 KR domains with bacterial KR domains. The
three ketoreductase (KR) domains in PKS-1 (KRi, KRz, and KRs) were aligned with bacterial KR
domains, SPN_KR3 and AMP_KR2 (A-type) and SPN_KR2 (B-type). Whereas A-type KR domains
catalyze the formation of an L-configured alcohol at the 3-position relative to the thioester in the
growing polyketide, B-type KR domains catalyze the formation of a D-configured alcohol at the 3
position relative to the thioester.” The PKS-1 KR: is a B-type KR domain, which provides further
support for the assigned configuration at C-22 in nemamide A. Although PKS-1 KR1 has an LKD motif
instead of an LDD motif, the LKD sequence is seen in the chicken FAS KR domain, which is presumed
to be a B-type KR domain.2 PKS-1 KR2 and KRs do not have characteristic residues of either an A-type
or a B-type KR domain. Sequences were aligned with Clustal Omega.® KR domains are from spinosyn
(Spn) and amphotericin (Amp) PKSs. Red boxes indicate possible NADP binding domains, red residues
indicate catalytic residues, pink residues (“LDD”) are characteristic of B-type KR domains, and green
residues (“W?”) are characteristic of A-type KR domains.
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PKS-1 TE EIAAH---AGNKRIFVMGHSMGGIMSREIVAELK-IWGYDIPFVMLFDSWVLRTNELDIE 107
NRPS-1 TE ESAEN---IETSKLVFIGASSAGTFAFSTSQLFA-DDD---VITVLLLDTG-—-——-————-—- 274
SOR_P TEI TTLAC---ARNSPFVLFGHSSGGNIAHMVAEHLE-SIGHGPAGVVLLDSY----DYASPA 110
AMP P TEI SVLMA---SDGEPFVMVGHSTGGSLAYLAAGVLEDTWGVKPEAVVLLDTASIRYNPSEGN 114
SPN P TEI AVLQE---FAGGSFVLVGHSSGGWLAHEVAGELE-RRGVVPAGVVLLDTY----IPGEIT 109
SPI:P:TEI ATVRS---TAGSPFAIVAYSSSGWLAYATASCLE-SKGSSPRALVLLDHV----DQ--—— 104
AVE P TEI AIVRF---TDGAPFALAGHSAGGWEFVYAVTSHLE-RLGVRPEAVVTMDAY----LPDDGI 110
PIK P TEI AILRA---AGDAPVVLLGHSGGALLAHELAFRLERAHGAPPAGIVLVDPY----PPGHQE 115
ERY P TEI AVIRT---QGDKPEFVVAGHSAGALMAYALATELL-DRGHPPRGVVLIDVY----PPGHQD 109
BAC:N:TEI IIKNI---QGEGPYTLIGYSSGGILAFDVAKELN-RQGYEVEDLIIIDSK----YRTKAE 97

TYR N _TET ATTAT---DPSGPYTLMGYSSGGNLAFEVAKELE-ERGYGVTDIILFDSY----WKDKATI 97

SUR N TEI LIQKL---QPEGPLTLFGYSAGCSLAFEAAKKLE-GQGRIVQRIIMVDSY----KKQGVS 114
MYX PN TEI EVRKV---RPKGPYRLGGWSTGGILAQAMARQLE-EAGEQVELLMLLETW----SPTVYQ 104
HEC PN TEI AIKSV---QPKGPYLLGGHSFGGLVAFETAQQLO-KQGDEVAKLFIIDMR----APAVDK 108
TUB PN TEI ELREL---QPRGPYRLGGWSFGCVVAYEVALQLE-AAGEQVALLSLLDEFP----APSGQR 108
CHO PN TEI AIQQI---QPSGPYHLGGHSAGARIAFAVALELQ-RRGAEVPLVSIVDMR----PPGRGA 105
MEG P TEII VLRDL---VGEVPFALFGHSMGALVAYETARRLEARPGVRPLRLEFVSGQT----APRVHE 126
PIK:P:TEII ATEPW---WQEGRLAFFGHSLGASVAFETARILEQRHGVRPEGLYVSGRR----APSLAP 135
BOR P TEII VLRA----RVHQPVALFGHSMGATLAFELARRFESAGIS-LEALLVSARP----APSRQR 131
TYL P TEIT ELRRLLDAPDGVPVALFGHSMGAVVAYETARLLHRSGAPRPAGLILSGRR----APTADR 151
KEN P TEII ALGA---RSDGRPFALFGHSMGSLVAFETARRLQTRGA-APSVLFASGRP----APSCLR 128
RIF P TEIT VLRP----FGDRPLALFGHSMGAIIGYELALRMPEAGLPAPVHLFASGRR----APSRYR 130
BAC N TEIT QVQAE---RKGDDYALFGHSMGSLLAYELYYQOMSGAGAEKPVHIFFSGYK----APNRIR 111
MIC:N:TEII ATLP----HLTKPFAFFGHSMGGLVSFELARLLRKEYNQSPLHLFVSGYR-—---APQIPD 138

Supplementary Figure 14. Alignment of PKS-1 and NRPS-1 TE domains with bacterial TE
domains. The PKS-1 and NRPS-1 TE domains were aligned with bacterial TEI and TEIl domains. TEI
domains cleave polyketides/nonribosomal peptides from PKS/NRPSs once biosynthesis is complete,
while TEIIl domains have editing functions.’® Both the PKS-1 TE domain and the NRPS-1 TE domain
have the Ser-Asp-His catalytic triad of TEI domains. Red residues indicate catalytic residues (portion of
sequence alignment showing conserved His is not shown). Although the PKS-1 TE domain appears to
be most similar to PKS-NRPS TEI domains (see Supplementary Fig. 15), it does have the sequence
motif around the catalytic Ser (GHSMG) that is characteristic of TEIl domains. Sequences were aligned
with Clustal Omega.® TE domains are from the PKS (P), NRPS (N), and PKS-NRPS (PN) assembly
lines that biosynthesize soraphen (Sor), amphotericin (Amp), spinosyn (Spn), spirangien (Spi),
avermectin (Ave), pikromycin (Pik), erythromycin (Ery), bacitracin (Bac), tyrocidine (Tyr), surfactin
(Sur), myxothiazol (Myx), hectochlorin (Hec), tubulysin (Tub), chondramid (Cho), megalomicin (Meg),
borrelidin (Bor), tylosin (Tyl), kendomycin (Ken), rifampicin (Rif), and microcystein (Mic).
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TYL_P_TEINl

RIF_P_TEIl
KEN_P_TEII .
PIK_P_TEN PKS and NRPS TEIll domains
BOR_P_TEII PKS TEIl domains
MEG_P_TEIl NRPS TEI domains
S— Il PKS-NRPS TEI domains
MIC_N_TEIl
| PIK_P_TEI C. elegans PKS-1 and NRPS-1
—:ERY_P_TEI
AMP_P_TEI
SPN_P_TEI
SOR_P_TEI
SPI_P_TEI
AVE_P_TEI
SUR_N_TEI
_I:TYR_N_TEI
BAC_N_TEI
I NPRS-1_TE
PKS-1_TE
MYX_PN_TEI
TUB_PN_TEI
CHO_PN_TEI
'ﬁ' _?HEC_PN_TEI

Supplementary Figure 15. Phylogeny of the PKS-1 and NRPS-1 TE domains and bacterial TE
domains. Both the PKS-1 and NRPS-1 TE domains cluster with the TEl domains of bacterial hybrid
PKS-NRPSs. TE domains are described in Supplementary Figure 14. Phylogenetic tree was generated
in MEGA 6.1
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Supplementary Figure 16. Comparison of development of wild-type, pks-1, and nrps-1 worms. (a)
Development of eggs (obtained through alkaline-bleach treatment of gravid adults) to the L4 stage for
wild-type, pks-1, and nrps-1 worms at different temperatures. Eggs were obtained using a similar
method as in Figure 2c, but were hatched in food such that they did not go through L1 arrest. The lack
of difference between wild type and mutants suggests that the delayed L1 recovery of the mutants seen
in Figure 2c is not due to the alkaline-bleach treatment or to a general delay in developmental rate. (b)
Development of eggs (obtained by allowing gravid adults to lay eggs) to the L4 stage for wild-type, pks-
1, and nrps-1 worms at different temperatures. The lack of difference between wild type and mutants
suggests that the delayed L1 recovery of the mutants seen in Figure 2c is not due to a general delay in
developmental rate. Data represent the mean + SD of two independent experiments. Two-tailed,
unpaired t-tests were used to determine statistical significance. All P values were non-significant except
as indicated (*P < 0.05).
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Supplementary Figure 17. Dauer formation and recovery in wild-type, pks-1, and nrps-1 worms.
(a) Dauer formation in wild-type, pks-1, and nrps-1 worms exposed to 1 uM asc-C6-MK (ascr#2) in the
dauer formation assay at 25 °C. (b) Recovery of wild-type, pks-1, and nrps-1 dauers after being placed
on a lawn of OP50 bacteria for 24h at 20 °C. Data represent the mean + SD of two (a) or four (b)
independent experiments. In (a) and (b), two-tailed, unpaired t-tests showed that there is no significant
difference between the wild type and mutants.
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hih-8p::gfp

Supplementary Figure 18. M-cell imaging in wild-type, pks-1 and nrps-1 backgrounds.
Fluorescence images showing that the M-cell (identified using the M-cell-specific reporter, hlh-8p:gfp)
does not divide during L1 arrest in wild-type, pks-1, and nrps-1 worms. M-cell arrest in arrested L1s is
an indication that the worm has properly arrested somatic progenitor cell division during starvation.
Certain mutants in the insulin/IGF-1 pathway, such as daf-16/foxo, undergo improper M-cell division
during L1 arrest.!?3
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Supplementary Figure 19. Fertility and brood size in wild-type, pks-1 and nrps-1 worms that
experienced extended L1 arrest. Percent fertility (a) and brood size (b) after L1s were subjected to
five days of L1 arrest and then allowed to recover and develop into adults on food. The absence of
fertility defects in the mutants suggests that the mutants maintain proper germline arrest during
starvation-induced L1 arrest. Certain mutants in the insulin/IGF-1 pathway, such as daf-18/pten,
undergo improper germline proliferation during L1 arrest, leading to fertility defects once the L1 recover
and develop to the adult stage.**® Data represent the mean + SD of five independent experiments (n =
30) (a) or two independent experiments (n = 20) (b). In (a) and (b), two-tailed, unpaired t-tests showed
that there is no significant difference between the wild type and the mutants.
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Supplementary Figure 20. Expression of insulins in wild-type, pks-1, and nrps-1 arrested L1s
relative to wild-type arrested L1s, as determined by gRT-PCR. ins-4, ins-5, ins-19, and ins-37 are
expressed at higher levels in pks-1 and/or nrps-1 arrested L1s than in wild-type arrested L1s. daf-28 is
also expressed at higher levels in pks-1 arrested L1s than in wild-type arrested L1s. Conversely, ins-33
is expressed at lower levels in pks-1 and nrps-1 arrested L1s than in wild-type arrested L1s. Higher
levels of expression of ins-4 and daf-28 in arrested L1s have been associated with reduced L1 arrest
survival, and deletion of ins-4 and daf-28 has been associated with increased L1 arrest survival.’® Data
represent the mean £ SD of three independent experiments. Two-tailed, unpaired t-tests were used to
determine statistical significance (*P < 0.05, **P < 0.01, ***P <0.001, ****P < 0.0001).
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Supplementary Figure 21. Expression of insulins in recovered versus arrested wild-type, pks-1,
and nrps-1 L1s, as determined by gRT-PCR. ins-5 and ins-19 are induced during recovery in wild-
type L1s, but not induced (or not induced as much) in pks-1 and nrps-1 L1s. ins-4 and ins-37 are not
induced during recovery (at least not at 6h post-recovery) in wild-type L1s, but are down-regulated in
pks-1 and nrps-1 L1s. Data represent the mean + SD of three independent experiments. Two-tailed,
unpaired t-tests were used to determine statistical significance (*P < 0.05, **P < 0.01, ***P < 0.001,
**FXP < 0.0001).

36



® Starved
OFed

*

w
o
J

N
()]
1

}p

N
o
1

Peak area (x104) / mg worm
IS o

()]
1

Nemamide A Nemamide B

Supplementary Figure 22. Nemamide production in arrested and recovered L1s. Levels of
nemamides A and B in arrested L1s and recovered L1s (6 h after addition of food). Data represent the
mean = SD of four independent experiments. Two-tailed, unpaired t-tests were used to determine
statistical significance (*P < 0.05).
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Supplementary Figure 23. L1 survival for wild-type and different mutant strains. In addition to
the pks-1(ttTi24066) and nrps-1(ttTi45552) strains (which were the pks-1 and nrps-1 alleles used
throughout this manuscript), we also tested L1 survival in the pks-1(0k3769) strain and the pks-
1(ttTi24066); nrps-1(ttTi45552) double mutant strain and obtained similar results. That is, no
statistically significant difference was found for any of the tested mutants in terms of mean survival.
The mean * SD of three independent experiments are plotted. Mean survival (days + SE) was calculated
as described in Methods: 12.2+0.3 for wild type, 9.4+0.4 for pks-1(ttTi24066), 8.9+0.4 for nrps-
1(ttTi45552), 7.7+0.4 for pks-1(0k3769), and 8.7+0.5 for pks-1(ttTi24066); nrps-1(ttTi45552). A two-
tailed, unpaired t-test was used to determine statistical significance (*P < 0.05, **P < 0.01, ***P <
0.001).
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Supplementary Figure 24. L1 survival for wild-type, pks-1, and nrps-1 worms at low and high
population densities. Survival assays were performed at 25 °C. The mean + SD of three independent
experiments are plotted. Mean survival (days = SE) was calculated as described in Methods: 8.3+0.2
for wild type/high, 6.4+0.4 for pks-1/high, 5.9£0.4 for nrps-1/high, 5.2+0.3 for wild type/low, 2.8+0.4
for pks-1/low, and 2.9+0.4 for nrps-1/low. A two-tailed, unpaired t-test was used to determine statistical
significance (*P <0.05, **P <0.01, ***P <0.001).
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Supplementary Figure 25. Feeding rate of wild-type, pks-1, and nrps-1 worms. Ten wild-type, pks-
1, or nrps-1 worms at the L4 stage were transferred to NGM-agar plates (containing 50 uM of 5-fluoro-
2’-dexoxyuridine to prevent egg development) with a lawn of OP50 bacteria. The plates were incubated
at 20 °C. The rate that the bacterial lawn was consumed was monitored over time, and no differences
between the worms strains were observed. Photos of the plates with the wild-type (a), pks-1 (b), and
nrps-1 (c) worms were taken after 6 d. Three replicates were done for each strain.
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Supplementary Figure 26. Pharynx pumping rate of wild-type, pks-1, and nrps-1 worms. Data
represent the mean + SD of two independent experiments. Two-tailed, unpaired t-tests showed that
there is no significant difference between the wild type and the mutants.
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Supplementary Figure 27. Effect of an unc-31(e928 null) mutation on survival of arrested L1s.
UNC-31 regulates insulin secretion and acts upstream of the insulin/IGF-1 pathway, which controls L1
survival in a manner dependent on the daf-16/foxo transcription factor.!21"'® The unc-31(e928 null)
mutation was able to suppress significantly, but not completely, the reduced survival of the pks-1 and
nrps-1 mutants. Thus, the nemamides likely extend L1 survival by negatively regulating UNC-31-
mediated insulin signaling and UNC-31-independent pathways. Survival assays were performed at
20°C. Mean survival (days + SE) was calculated as described in Methods: 14.3 + 0.2 for wild type,
10.0 + 0.2 for pks-1, 10.9 £ 0.2 for nrps-1, 17.5 + 0.2 for unc-31, 13.1 + 0.3 for pks-1; unc-31, and 13.9
+ 0.2 for nrps-1; unc-31. Data represent the mean + SD of three independent experiments. A two-tailed,
unpaired t-test was used to determine statistical significance (*P < 0.05, **P <0.01, ***P <0.001).
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Model for the role of the nemamides in L1 arrest and survival.
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Supplementary Table 1. *H and *C NMR data derived from H,
dgf-COSY, HSQC, and HMBC spectra for nemamide A in
dimethyl sulfoxide-ds.

# on (J (Hz)) Jc HMBC
1 171.1

2 4.51, m (J2,3a=9.0; J2,3p=6.9) 50.1 | C:

2-NH 7.46, brd (J22-nH = 8.1) Cs

3a 2.45, overlap (Jsa30 = 15.9) 36.9 Cy, C2

3b 2.61, overlap 369 | C

4 171.3

4-NHa 6.85, brs (Ja-NHza 4-NHzb = 4.8) Cs

4-NH:zb 7.14, brs Cq4

5 170.7

6 4.45, m (Js7a = 4.9; Jo,70= 6.6) 49.3

6-NH 8.42, brs (Jss-nH = 8.2)

7a 2.56, overlap (J7a7 = 16.6) 35.8 | Cs, Cs

7b 2.95, dd 35.8 Cs, Cs

8 173.3

8-NHoa 7.18, brs (Js-NHza ,8-NHzb = 4.9) Ct

8-NH:zb 7.86, brs

9 170.9

10 4.22, m (J10,11a= 6.7; J10,110 = 9.6) 52.5

10-NH 8.86, brs (Jio,10-nH = 3.4)

1la 2.44, overlap (Ji1a110=17.8) 35.9 | Gy, Cr2

11b 2.53, overlap 35.9 | Cy, Cio

12 173.1

12-NH2a 6.95, brs (Ji2-NHza ,12-NHzb = 4.8) Cu
12-NH:b 7.58, brs

13 173.4

14a 2.41, overlap (J14a152= 8.9) 33.3 | Cus

14b 2.57, overlap (J14a,140 = 18.5) 33.3 | Cis

15a 3.15, overlap (Jisa,150 = 15.9) 34.8

15b 3.42, overlap (Jiab,15b = 9.6) 34.8

15-NH 7.73, brs

16 170.3

17a 2.18, brd (Ji7a170 = 14.5) 40.6 Cis

17b 2.47, overlap (Jizbis = 9.8) 406 | Cus

18 4.08, m (J18,19 =6.7) 44.9

18-NH 7.05, brs (Jig1s-nH = 8.2) C1

19 1.32, m (Ji920 = 6.7) 43.7 | Cuz, Cis, C20, Cn
20 351, m (Jz0212 = 8.2) 63.3

20-OH 4.55, brs

2la 1.30, m (J21a,210 =14.5) 43.5

21b 1.48, m (J2ib22 = 9.8) 435 | Ca

22 3.76, m (J22,24 = 7.5) 77.6 | Ca3, Cos

23 3.13,s 55.5 C2

24 5.51, dd (J24,25 = 15.4) 133.7 | Cx, C26

25 6.19, dd (J2s26 = 11.2) 131.3 | Cx, Ca

26 6.14, dd (J2627 = 14.5) 129.7 | Cos, C2s

27 6.23, dd (J27,28 = 10.7) 132.9 | Cas, C26, Ca9
28 6.07, dd (J2s,20 = 15.1) 130.1 | Ca6, Cao

29 5.72, dt (J29,30 = 7.0) 135.2 | Co7, Cso, Ca1
30 2.06, m 32.0 | Cas, Ca9, Ca1, Ca2
31 1.35, overlap 28.2 | Ca9, C3, C32, Cs3
32 1.24, overlap 30.8 C30, Cai, Css, Cas
33 1.26, overlap (Js334 = 7.1) 21.8 | Cs1, Cs2, Cas
34 0.86, t 13.8 | Cs, Cs3




Supplementary Table 2. *H and 3C NMR chemical shifts derived from *H, TOCSY,

HSQC, and HMBC spectra for the three cyclic peptides in dimethyl sulfoxide-de.

# Cyclic Peptide 3 (2S,6R,10R,18R) | Cyclic Peptide 4 (2R,6S,10R,18S) | Cyclic Peptide 5 (2R,6R,10S,18S)
Jn (J (H2)) dc Jn (J (H2)) dc ou (J (Hz)) Jc

1 169.7 169.6 170.1

2 4,48, m 49.9 4,49, m 49.7 4.40, m 50.9

2-NH 7.49, brd, (J22n=8.1) 7.85, brd, (J22-nv = 8.8) 7.49, brd, (J22-nn=7.9)

3a 2.43, dd, (Jza3p=19.4; 36.8 2.43, dd, (Jsasn=15.8; 35.1 2.56, overlap 36.5
J2,3a =12.7) J2,3a =6.9)

3b 2.62, dd, (Jza3p=19.3; 36.8 2.69, (J3a30=15.8; J23p 35.1 2.56, overlap 36.5
J2,3 =6.5) =5.6)

4 171.2 171.8 171.2

4-NH?a 6.82, brs 6.85, brs 6.88, brs

4-NHzb 7.11, brs 7.38, brs 7.27, brs

5 170.5 170.3 170.7

6 441, m 49.2 4,40, m 48.7 4,33, m 50.9

6-NH 8.20, brd, (Js6-nv = 8.8) 7.81, brd, (Js6-n1 = 8.8) 8.89, brd, (Jss-nH =5.2)

7a 2.58, brd, (J7a7b=17.2) 35.4 | 2.54, overlap 35.3 2.48, overlap 35.4

7b 2.98, dd, (J7a7b=16.4; 354 3.05, dd, (J7am=17.2; 35.3 2.60, overlap 35.4
Jo.b =4.7) Js.7b =3.8)

8 173.6 173.8 170.9

8-NH2a 7.32, brs 7.47, brs 6.89, brs

8-NH:b 7.80, brs 7.92, brs 7.33, brs

9 171.1 170.2 173.9

10 425, m 52.1 4,46, m 49.3 4.40, m 50.9

10-NH 8.63, brs 8.39, brd, (J10,10nH = 7.4) 8.48, brs

1la 2.51, overlap 35.6 2.48, overlap 35.4 2.31, brd, (Jua116=16.1) | 35.6

11b 2.51, overlap 35.6 2.65, (J11a,116=15.7; 354 2.49, overlap 35.6

J10,11b =6.8)

12 173.6 172.3 170.3

12-NHa | 6.96, brs 6.95, brs 6.98, brs

12-NHz2b | 7.43, brs 7.33, brs 7.40, brs

13 173.3 172.6 172.3

1l4a 2.42, overlap 33.5 2.36, m 34.7 2.23,m 34.0

14b 2.57, overlap 335 2.48, overlap 34.7 2.56, overlap 34.0

15a 3.18, m 34.8 3.14, overlap 34.3 3.33, overlap 35.4

15h 3.42, m 34.8 3.55, overlap 34.3 3.33, overlap 35.4

15-NH 7.36, brs 7.25, brs 7.00, brs

16 170.7 170.2 170.0

17a 2.15, brd, (Ji7a17b=12.0) | 41.4 2.11, brd, (J17a17b=11.3) | 41.5 2.06, dd, (J17a170=13.0, 41.7

J17a18= 9.4)

17b 2.46, overlap 41.4 2.51, oveerlap 415 2.36, brd, (Jiza1p=13.1) | 41.7

18 3.96, m 430 |397,m 43.1 397, m 42.6

18-NH 6.95, brd, (Jis18-nH=7.9) 7.08, overlap 6.66, brd, (Jis18-nH=7.7)

19 0.98, d, (Ji819=5.9) 20.7 | 0.97,d, (Ji819=5.9) 20.9 1.04, d, ( Jis19= 6.5) 20.1
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Supplementary Table 3. Differences between the cyclic peptides and
nemamide A in terms of 'H and 3C NMR chemical shifts.”

# (SH(peptide)' OH nemamideA) 6C(peptide)' Jc nemamideA)
Cyclic Cyclic Cyclic Cyclic Cyclic Cyclic
Peptide 3 Peptide 4 Peptide 5 Peptide 3 Peptide 4 Peptide 5
(2S,6R, (2R,6S, (2R,6R, (2S,6R, (2R,6S, (2R,6R,
10R,18R) 10R,18S) 10S,18S) 10R,18R) 10R,18S) 10S,18S)
2 -0.03 -0.02 -0.11 -0.2 -0.4 0.8
2-NH 0.03 0.39 0.03
3a -0.02 -0.02 0.11 -0.1 -1.8 -0.4
3b 0.01 0.08 -0.05 -0.1 -1.8 -0.4
4 -0.1 0.5 -0.1
4-NHa -0.03 0 0.03
4-NH2zb -0.03 0.24 0.13
5 -0.2 -0.4 0
6 -0.04 -0.05 -0.12 -0.1 -0.6 1.6
6-NH -0.22 -0.61 0.47
7a 0.02 -0.02 -0.08 -0.4 -0.5 -0.4
7b 0.03 0.1 -0.35 -0.4 -0.5 -0.4
8 0.3 0.5 2.4
8-NH?a 0.14 0.29 -0.29
8-NH2b -0.06 0.06 -0.53
9 0.2 -0.7 3.0
10 0.03 0.24 0.18 -0.4 -3.2 -1.6
10-NH -0.23 -0.47 -0.38
1la 0.07 0.04 -0.13 -0.3 -0.5 -0.3
11b -0.02 0.12 -0.04 -0.3 -0.5 -0.3
12 0.5 -0.8 -2.8
12-NHza | 0.01 0 0.03
12-NHzb | -0.15 -0.25 -0.18
13 -0.1 -0.8 -1.1
14a 0.01 -0.05 -0.18 0.2 14 0.7
14b 0 -0.09 -0.01 0.2 1.4 0.7
15a 0.03 -0.01 0.18 0 -0.5 0.6
15b 0 0.13 -0.09 0 -0.5 0.6
15-NH -0.37 -0.48 -0.73
16 0.4 -0.1 -0.3
17a -0.03 -0.07 -0.12 0.8 0.9 1.1
17b -0.01 0.04 -0.11 0.8 0.9 1.1

|
[186NH 01 J003 1039 [ [ | |

“IH and *C NMR chemical shifts of nemamide A (listed in Supplementary Table 1)
were subtracted from the corresponding chemical shifts of the three cyclic peptides
(listed in Supplementary Table 2). If dneyclic peptide)~ OH(nemamicgeay > 0.1, the value is
highlighted in red. If dceyclic peptide)- Ocnemamidea) > 1, the value is highlighted in red.
Exchangeable protons are shaded light gray as their chemical shifts vary depending on
sample concentration ([cyclic peptide] >> [nemamide A]) and other factors. C-1, C-
18, and C-19 rows are shaded dark gray as these values should be quite different
between nemamide A and the three cyclic peptides, as the cyclic peptides were all
truncated versions of nemamide A.
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Supplementary Table 4. Comparison of the A domain selectivity codes.
Selectivity codes for B-Ala and L-Asn in bacterial A domains are listed (in red). The
corresponding amino acids in the PKS-1 A1, NRPS-1 Az, and NRPS-1 Az domains
are listed for comparison.

Sequence position: 235 236 239 278 299 301 322 330 331 517

[-Ala recognition V D X V | S X G D K
L-Asn recognition D L T K L G E V G K
PKS-1 As D V S F T G I I W K
NRPS-1 A2 D I A Y Q G E VvV Y K
NRPS-1 As D N L L I G N A F K




Supplementary Table 5. Primers used for plasmid construction or genotyping.

Primer Purpose Sequence (5°-3°)*

nrps-1p-Ascl-F GFP reporter gcatGGCGCGCCTGCATCAGCACATACTCAATGGTC
nrps-1p-Notl-R GFP reporter catgGCGGCCGCTGTGCAGAGTGCTCCGCGTAG
pks-1p-Sall-F GFP reporter gcgcGTCGACTGTGCATACATGAGTTGTTGCT
pks-1p-Notl-R GFP reporter CcatgGCGGCCGCTTTCTCCAAATCTTAATACAAATTATAT
nrps-1-F Mos1 detection GGAGAAGTCATCTGTTTCCA

nrps-1-R Mos1 detection TTGGCGATCACTTCAAATGG

pks-1-F Mos1 detection GAGGGAATATTGTATCCCACC

pks-1-R Mos1 detection GAAAACCGTGTTTGGTCTCG

0JL115% Mos1 detection GCTCAATTCGCGCCAAACTATG

daf-16-F% deletion detection GTAGACGGTGACCATCTAGAG

daf-16-internal® deletion detection CGGGAATTTCAGCCAAAGAC

daf-16-R% deletion detection GACGATCCAGGAATCGAGAG

unc-31-F deletion detection TAAGACCGCCCATGTTGCAC

unc-31-internal deletion detection AGTTGTGGCCTCTCCAATTC

unc-31-R deletion detection ATTCTGAGGGCACGACTCTG

ins-11-F gRT-PCR TCTTCGTCAATGAGGGTCAAG

ins-11-R gRT-PCR CAGTCGGATGCTGTTCTCC

*Underlined bases indicate restriction sites.
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