Supplementary Note 1	
Supplementary Note 1.1	
UPLC-MS detection of N-acetylcysteamine (SNAC) thioesters	P2
Supplementary Note 1.2	
Structure characterization data of compounds 12a and 12b	P3
Supplementary Note 1.3	
Structure characterization data of compound 13	P6
Supplementary Note 1.4	
Structure characterization data of compound 14	P13
Supplementary Note 2	
Structure characterization data of compound 10	P22
Supplementary Note 3	
Structure characterization data of compound 6	P39

Supplementary Note 1.1

UPLC-MS extracted ion chromatograms of compounds **1**, **2**, **6**, **7**, **10** and their corresponding *N*-acetylcysteamine (SNAC) thioesters, **12–16**, synthesized via EDC/DMAP coupling reactions.

Structure characterization data of compounds 12a and 12b

The chemical structures of two *N*-acetylcysteamine (SNAC) thioester diastereomers (**12a** and **12b**) of compound **1** (precolibactin-413).

Overlay of the ¹H NMR spectra of **12a** and **12b**. The spectra were recorded in DMSO- d_6 at 600 MHz. (Maroon = **12a**; Teal = **12b**).

Marfey's analysis to determine the alanine configurations in **12a** and **12b**. The retention times of DNPA (2,4-dinitrophenyl-5-L-alaninamide)-standard L-Ala and DNPA-standard D-Ala were 9.1 min (a) and 9.9 min (b), respectively. Based on the retention times of DNPA-**12a** Ala [9.1 min, (c)] and DNPA-**12b** Ala [9.9 min (d)], the configurations of alanine in **12a** and **12b** were determined as L and D, respectively.

NMR spectroscopi	e data fo	or 13 in 1	DMSO- d_6 .
------------------	-----------	-------------------	---------------

С	δ _C	$\delta_{\rm H}$ (<i>J</i> in Hz)	COSY	HMBC (1 H to 13 C)
1	14.1	0.85 t (6.6)	2	2, 3
2	22.6	1.25 m	1	1, 3
3	31.4	1.23-1.25 m		
4-10	28.8, 29.0, 29.1,	1.23-1.25 m		
	29.2, 29.2, 29.2,			
	29.2			
11	28.8	1.23-1.25 m		
12	25.4	1.46 m	13a, 13b	11, 13, 14
13	35.4	a 2.08 m	12, 13b	11, 12, 14
		b 2.08 m	12, 13a	11, 12, 14
14	172.3	-		
		NH, 7.92 d (8.4)	15	14, 15, 16
15	50.0	4.44 m	14NH, 16a,	16, 18
			16b	
16	37.4	a 2.34 dd (8.4, 15.6)	15, 16b	15, 17
		b 2.43 dd (6.0, 15.0)	15, 16a	15, 17
17	171.5	-		
		a NH, 6.83 s	17bNH	16, 17
		b NH, 7.26 s	17aNH	17
18	170.6	-		
		NH, 7.55 d (8.4)	19	18, 19, 20, 21
19	43.8	3.73 m	18NH, 20, 21	18, 20, 21, 22
20	20.5	1.01 d (6.6)	19	19, 21
21	31.6	a 1.63 m	19, 21b, 22a,	19, 20, 22, 23
			22b	
		b 1.67 m	19, 21a, 22a,	19, 20, 22, 23
			22b	
22	40.5	a 2.54 m	21a, 21b, 22b	19, 21, 23
		b 2.57 m	21a, 21b, 22a	19, 21, 23
23	198.5	-		

24	28.1	a 2.87 m	24b, 25a, 25b	23, 25
		b 2.88 m	24a, 25a, 25b	23, 25
25	38.4	a 3.13 m	24a, 24b,	24, 26
			25b, 25NH	
		b 3.16 m	24a, 24b,	24, 26
			25a, 25NH	
		NH, 8.04 t (5.4)	25a, 25b	25, 26
26	169.4	-		
27	22.2	1.78 s		24, 25, 26

The NMR-based key correlations for the structural assignment of 13.

¹H NMR spectrum of **13** (recorded in DMSO- d_6 at 600 MHz).

¹³C NMR spectrum of **13** (recorded in DMSO- d_6 at 150 MHz).

¹H-¹³C HSQC spectrum of **13** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹³C HMBC spectrum of **13** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹H COSY spectrum of **13** (recorded in DMSO- d_6 at 600 MHz).

NMR spectroscopic data for 14 in DMSO- d_6 .

С	δ _C	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (¹ H to 13 C)
1	14.1	0.84 t (6.6)	2	2, 3
2	22.2	1.26 m	1	1, 3
3	31.4	1.18-1.26 m		
4-10	28.7, 29.0, 29.1,	1.18-1.26 m		
	29.1, 29.2, 29.2,			
	29.2			
11	28.8	1.18-1.26 m	12	
12	25.3	1.45 m	11, 13a, 13b	
13	35.3	a 2.10 m	12, 13b	11, 12, 14
		b 2.11 m	12, 13a	11, 12, 14
14	172.4	-		
		NH, 7.90 d (7.2)	15	14, 15, 16
15	50.2	4.46 m	14NH, 16a,	16, 18
			16b	
16	37.5	a 2.38 m	15, 16b	15, 17
		b 2.45 m	15, 16a	15, 17
17	171.6	-		
		a NH, 6.83 s	17bNH	16, 17
		b NH, 7.28 s	17aNH	17
18	170.7	-		
		NH, 7.72 d (7.8)	19	18, 19, 20, 21
19	44.7	3.82 m	18NH, 20,	18, 20, 21, 22
			21a, 21b	
20	20.4	1.05 d (6.6)	19	19, 21
21	35.2	a 1.54 m	19, 21b, 22a,	19, 20, 22

			22b	
		b 1.59 m	19, 21a, 22a,	19, 20, 22
			22b	
22	24.1	a 3.03 m	21a, 21b, 22b	
		b 3.25 m	21a, 21b, 22a	
23	153.2	-		
24	109.5	-		
25	166.9	-		
		NH, 8.48 s		23, 24, 25, 26, 29
26	40.1	-		
27	15.3	a 1.33 m	27b, 28a, 28b	26, 28, 29
		b 1.38 m	27a, 28a, 28b	26, 28, 29
28	15.3	a 1.33 m	27a, 27b, 28b	26, 27, 29
		b 1.38 m	27a, 27b, 28a	26, 27, 29
29	159.9	-		
30	103.1	6.10 s		23, 24, 26, 31
31	161.9	-		
32	52.9	a 4.97 d (16.8)		23, 31, 33
		b 4.99 d (16.8)		23, 31, 33
33	194.6	-		
34	28.2	a 2.94 m	34b, 35a, 35b	33, 35
		b 2.97 m	34a, 35a, 35b	33, 35
35	38.1	a 3.16 m	34a, 34b,	34, 36
			35b, 35NH	
		b 3.21 m	34a, 34b,	34, 36
			35a, 35NH	
		NH, 8.06 t (5.4)	35a, 35b	35, 36
36	169.6	-		
37	22.6	1.79 s		36

The NMR-based key correlations for the structural assignment of 14.

¹H NMR spectrum of **14** (recorded in DMSO- d_6 at 600 MHz).

¹³C NMR spectrum of **14** (recorded in DMSO- d_6 at 150 MHz).

¹H-¹³C HSQC spectrum of **14** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹³C HMBC spectrum of **14** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹H COSY spectrum of **14** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹H NOESY spectrum of **14** (recorded in DMSO- d_6 at 600 MHz).

NMR spectroscopic data for 10 (10a and 10b two stereoisomers) in DMSO- d_6 .

С	δ _C			$\delta_{\rm H} (J \text{ in Hz})$	COSY	HMBC (1 H to 13 C)
1	14.1			0.84 t (6.8)	2	2, 3
2	22.3			1.25 m	1	1
3	31.5			1.14-1.27 m		
4-10	28.8,	29.0,	29.0,	1.14-1.27 m		
	29.0,	29.1,	29.1,			
	29.2					
11	28.8			1.14-1.27 m		
12	25.4			1.41 m	13	11, 13, 14
13	35.4			2.05 m	12	11, 12, 14
14	172.5 1	l 0a /		-		
	172.4 1	lOb				
				NH, 8.03 10a d (7.7)/	15	14, 15, 16
				NH, 8.01 10b d (7.7)		
15	50.2			4.46 m	14NH, 16a,	16, 18
					16b	
16	37.7 10)a/		a 2.35 dd (8.5, 15.3)	15, 16b	15, 17
	37.8 10)b				
				b 2.41 dd (4.3, 15.3)	15, 16a	15, 17
17	171.6			-		
				a NH, 6.84 s	17NHb	16, 17
				b NH, 7.31 s	17NHa	17
18	170.6 1	l 0a /		-		
	170.5 1	l0b				
				NH, 7.58 10a d (7.7)/	19	18, 19, 20, 21
				NH, 7.66 10b d (7.7)		

19	44.7	3.70 m	18NH, 20, 21a, 21b	18, 20, 21, 22
20	20.4	0.99 d (6.0)	19, 21b	19, 21
21	30.3 10a /	a 1.44 m	19, 21b, 22a,	19, 22
	30.4 10b		22b	
		b 1.57 m	19, 20, 21a, 22a, 22b	19, 22
22	34.9 10a /	a 1.69 10a m/	21a, 21b, 22b	19, 21, 23
	35.0 10b	a 1.79 10b m	, ,	<i>, ,</i>
		b 1.79 10a m/	21a, 21b, 22a	19, 21, 23
		b 1.89 10b m		
23	107.8	-		
24	45.8 10a /	a 2.60 m	24b	22, 23, 25
	46.1 10b			
		b 3.31 d (12.8)	24a	22, 23, 25
25	170.1 10a /	-		
	170.2 10b			
		NH, 7.86 br s		25, 26, 27, 28
26	39.4	-		
27	22.1	a 0.87 m	27b, 28a, 28b	26
		b 1.10 m	27a, 28a, 28b	29
28	22.1	a 0.87 m	27a, 27b, 28b	26
		b 1.10 m	27a, 27b, 28a	29
29	205.4	-		
30	48.4	a 3.10 d (14.5)	30b	26, 29, 31
		b 3.71 m	30a	26, 29, 31
31	166.9	-		
		NH, 9.06 s	32a, 32b	31, 32
32	40.6	a 4.27 d (14.5)	31NH, 32b	33
		b 4.78 dd (6.8, 17.0)	31NH, 32a	33
33	168.1	-		
34	120.1	8.03 s		32, 33, 35, 36, 37
35	154.1	-		
36	107.6	-		
37	160.4	-		
38	156.3	-		
39	127.6	8.17 s		38, 40, 41
40	156.1	-		
41	163.9	-		

NMR-based key correlations for the structural assignment of 10.

HRESIMS of 10.

UV spectrum of **10** (c) in comparison with those of **5** (a) and **7** (b).

MSⁿ fragmentation pattern of **10**.

Frag. 1

Frag. 2

Frag. 4

Frag. 6

ΗÓ H₂Ņ ΝH

Frag. 8

Frag. 7

Frag. 7

Frag. 9

Frag. 10

Frag. 11

Frag. 12

H S H_2N N N	∇ H S H_2N O	о 9	Fragmentation	MS ⁿ	Obs. mass	Calc. mass	Error [Da]
H ₂ N T N T S OH	Y Y N Y Y OH	H ₂ N	1	MS ²	870.371	870.353	0.018
0 0 0 0	0 0 0 3-	NH	2	MS ²	852.369	852.342	0.027
		0 111	3	MS ²	660.183	660,155	0.028
Erag 13	Eraa 14	Eraa 17	4	MS ²	642.193	642.144	0.049
Flay. 15	Flay. 14	Flag. 17	5	MS ²	591.416	591.376	0.040
			6	MS ²	574.381	574.349	0.032
			7	MS ²	545.156	545.128	0.028
			8	MS ² /MS ³	528.141	528.101	0.040
			9	MS ³	527.136	527.117	0.019
sH_N	S NHa	0	10	MS ² /MS ³	510.152	510.091	0.061
∇ H 3 N		HN	11	MS ³	483.156	483.127	0.029
H_2N Υ Υ N Υ Υ	H ₂ N N T T		12	MS ²	449.383	449.302	0.081
0 0 0 0	O S V OH	-NH	13	MS ² /MS ³	422.124	422.059	0.065
		0	14	MS ² /MS ³ /MS ⁴	405.074	405.033	0.041
Frag 15	Frag 16	Frag 18	15	MS⁴	378.075	378.070	0.006
11ay. 15	11ag. 10	1 ag. 10	16	MS ² /MS ³ /MS ⁴	297.081	297.012	0.069
			17	MS ³	249.214	249.124	0.090
			18	MS ³	231.116	231.113	0.003

The major fragmentation species from MS^n measurement of **10**. Fragmentation was acquired with collision energy of 28 V. Obs. = observed; Calc. = calculated.

¹H NMR spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹³C NMR spectrum of **10** (recorded in DMSO- d_6 at 212.5 MHz).

¹H-¹³C HSQC spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹H-¹³C HMBC spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹H-¹H COSY spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹H-¹H TOCSY spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹H-¹H NOESY spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

¹H-¹⁵N HSQC spectrum of **10** (recorded in DMSO- d_6 at 850 MHz).

Expanded ¹H-¹³C HMBC spectrum of **10** showing the key correlations of H-34 to C-32, C-33, C-35, C-36 and C-37 (recorded in DMSO- d_6 at 600 MHz with a 1.7 mm cryoprobe).

Expanded ¹H-¹³C HMBC spectrum of **10** showing the key correlations of H-39 to C-38, C-40 and C-41 (recorded in DMSO- d_6 at 850 MHz).

NMR spectroscopic data for 6 in DMSO- d_6 .

С	δ _C			$\delta_{\rm H} \left(J \text{ in Hz} \right)$	COSY	HMBC (¹ H to ¹³ C)
1	14.1			0.84 t (7.2)	2	2, 3
2	22.3			1.26 m	1	1, 3
3	31.5			1.19-1.24 m		
4-10	28.9,	29.1,	29.2,	1.19-1.24 m		
	29.2,	29.2,	29.2,			
	29.2					
11	28.8			1.19-1.24 m	12	
12	25.3			1.46 m	11, 13a, 13b	11, 13, 14
13	35.5			a 2.11 m	12, 13b	11, 12, 14
				b 2.17 m	12, 13a	11, 12, 14
14	172.6			-		
				NH, 8.13 br s	15	14
15	50.2			4.50 m	14NH, 16a,	16, 18
					16b	
16	37.7			a 2.38 m	15, 16b	15, 17
				b 2.47 m	15, 16a	15, 17
17	171.8			-		
				a NH, 6.80 s	17bNH	16, 17
				b NH, 7.37 s	17aNH	17
18	170.9			-		
				NH, 7.62 d (7.8)	19	15, 18, 19, 20, 21
19	44.7			3.82 m	18NH, 20,	18, 20, 21, 22
					21a, 21b	
20	20.6			1.03 d (6.6)	19	19, 21, 22
21	35.0			a 1.56 m	19, 21b, 22a,	19, 20, 22
					22b	-
				b 1.64 m	19, 21a, 22a,	19, 20, 22
					22b	

22	24.3	a 2.92 m	21a, 21b, 22b	
		b 3.26 m	21a, 21b, 22a	
23	153.3	-		
24	108.9	-		
25	167.3	-		
		NH, 8.37 s		23, 24, 25, 26, 29,
				30
26	40.1	-		
27	15.2	a 1.30 m	27b, 28a, 28b	26, 28, 29
		b 1.36 m	27a, 28a, 28b	26, 28, 29
28	15.2	a 1.30 m	27a, 27b, 28b	26, 27, 29
		b 1.36 m	27a, 27b, 28a	26, 27, 29
29	159.3	-		
30	102.8	6.03 s		23, 24, 26, 29, 31
31	162.2	-		
32	46.0	a 4.56 d (18.0)		23, 31, 33
		b 4.67 d (16.8)		23, 31, 33
33	169.7	-		

UV spectrum of **6**.

NMR-based key correlations for the structural assignment of 6 as compared to the structure of known 7 (precolibactin-712).

Note for structure elucidation of 6: Compound 6 was obtained as white and amorphous powder. The molecular formula was determined as $C_{33}H_{51}N_5O_7$ based on the HRESIMS analysis (m/z 630.3842 $[M + H]^+$, calcd 630.3867). A comparison of the 1D and 2D NMR spectra of 6 and 7 indicated that 6 contains the *N*-myristoyl-D-asparagine residue same and 1H-pyrrolo[3,4-c]pyridine-3,6(2H,5H)-dione unit as in 7. However, the thiazole proton resonance at $\delta_{\rm H}$ 8.09 (H-34), and the carbon signals at $\delta_{\rm C}$ 164.2 (C-33), $\delta_{\rm C}$ 126.9 (C-34) and $\delta_{\rm C}$ 151.7 (C-35) in 7 were not observed in 6, suggesting an absence of the thiazole ring in 6. Instead, C-32 ($\delta_{\rm C}$ 46.0) in 6 was observed to connect the 1H-pyrrolo[3,4-c]pyridine-3,6(2H,5H)-dione unit and the terminal carboxyl group, as evidenced by the HMBC correlations from the methylene protons at $\delta_{\rm H}$ 4.56 (H-32) to the carbon signals at C-23 ($\delta_{\rm C}$ 153.3), C-31 ($\delta_{\rm C}$ 162.2) and C-33 ($\delta_{\rm C}$ 169.7). As an intermediate from the *clb* pathway, **6** can be envisioned to be released from the first NRPS module of ClbJ, which would fill the gap between previously isolated precolibactin-546 (5) and precolibactin-712 (7).

¹H NMR spectrum of **6** (recorded in DMSO- d_6 at 600 MHz).

¹³C NMR spectrum of **6** (recorded in DMSO- d_6 at 150 MHz).

¹H-¹³C HSQC spectrum of **6** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹³C HMBC spectrum of **6** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹H COSY spectrum of **6** (recorded in DMSO- d_6 at 600 MHz).

¹H-¹H NOESY spectrum of **6** (recorded in DMSO- d_6 at 600 MHz).